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ABSTRACT ;

Earlier experimental work has been extended to evaluate the effect of
moisture on the Hugoniot of playa. For engineering applications the Hugoniot
of moist playa can be predicted with sufficient accuracy from the Hugoniot of
dry playa and water and the assumption of pressure equilibrium.

Isentropic release data were obtained for moist and dry playa. The steep
release curve (in the P-V plane) from high pressure implies an irreversible
phase change. Some low pressure data in the elastic-plastic region are

presented.

A theoretical discussion of various forms of the Mie-Grineisen equation
and the physical basis of asymptotic statistical models is presented.

Shock stability is reviewed. Phase transitions in which AV < 0 are
classified according to the signs of the slopes of the coexistence curves.
Relative slopes of Hugoniots and isentropes in the mixed phase region are
calculated. The results of the theoretical discussion are applied to transitions
in bismuth, iron, and quartz. Agreement of values of dP/dT deduced from
shock data and measured directly are good for bismuth and poor for quartz

and iron.

Calculations of spherical shock propagation in a hypothetical medium that
undergoes a phase change are presented. The calculations show qualitatively
some types of pulse shapes that may be expected in a transforming medium.

It is concluded that the proper treatment of phase changes is an outstanding

problem in predicting equations of state for earth materials.
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1-INTRODUCTION

The goal of this program is to measure in some detail the equation of
state of Nevada Test Site playa, to extrapolate the results to pressure and
temperature regimes beyond the experimental range using existing theoretical
methods, and to examine the sensitivity of shock propagation in spherical
geometry to reasonable variations and uncertainties in the equation of state.

In the previous year's work Hugoniot measurements were obtained on dry
samples of playa of two different porosities, of initial densitities 1.55 and 1. 95
g/ em® (crystal density, 2.66 g/ cm3) in the pressure range 40 to 500 kbar.
These results showed several interesting features: (1) the differences inthermal
pressure due to differences in initial porosity are small and imply a small
value (< 1) of the effective Gruneisen parameter, (2) the pressure-volume
curve appears to be multivalued in the 200- to 400-kbar range. This result
shows that a simple Mie-Griineisen equation of state with I' a function of
volume only is inadequate and probably implies the existence of polymorphism--
presumably the quartz-stishovite transition, which is known to occur in this

pressure range.

During the current effort these results were extended in three directions:

1. The effects of moisture were examined by measuring Hugoniot states
of samples of the same initial (dry) density as before, viz., 1.55 and 1.95
g/cms, but with approximately 10 percent by weight of water added. In addi-
tion, samples containing as large a fraction of moisture as possible consistent

with controllable sample quality were tested.

2. The experiments also determined several points on the release isen-
tropes from shocked states. For earth materials particularly, experimental
determination of these curves is just as impcrtant as determination of
Hugon.ots because of the possibility of irreversible phase transitions and be-
cause of uncertainties in the proper theoretical treatment of the effects of
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moisture. Both of these problems severely complicate the derivation of
isentropes from Hugoniots so that customary procedures used, for example,
for metals and simple ionic solids are of questionable validity. Some un-

expected peculiarities were in fact observed at higher pressures.

3. Preliminary experiments were also performed in the very low pres-
sure range to investigate the pressure region in which compaction to crystal
density occurs. Unfortunately, insufficient effort could be devoted to this
problem to give clearly reliable results. Some measurements were obtained,

but the results should be regarded as tentative.
The experimental methods and results are described in Section 3.

In Section 4 a general discussion of various approaches to predicting
equations of state is given. Also in that section is a comprehensive review of
the thermodynamics of the Mie-Griineisen equation of state and a discussion

of the different forms in which it is used by various authors.

The physical bases for theories of high pressure asymptotic forms of
equation of state are reviewed in the appendix in elementary form to assist
the nonspecialist to understand the assumptions underlying these theories and
to assist him in appreciating the difficulties in assessing their validity.

Clearly one of the most difficult and potentially important problems in
constructing an equation of state is that of phase changes, including poly-
morphism, melting, and vaporization. The existence of polymorphism, the
location of phase boundaries, and the relevant thermodynamic parameters
describing transitions must at present be determined experimentally, and
measurements in most cases are lacking. Moreover, the effects of phase
changes on Hugoniot and isentropic forms of equation of state and on shock

propagation has so far received little attention.

The work reported in Section 5 is a fundamental and general treatment
of the thermodynamics of phase changes with particular reference to their
effects on the Hugoniot. Application of this theory to existing shock measure-
ments in iron and quartz shows substantial discrepancies between theory and

experiment--possibly due to nonequilibrium effects.

'S s o i g,



In Section 6 the results of spherical shock calculations for an equation-
of-state model containing the major elements of a phase transition are pre-
sented. These show the qualitative shock structure to be expected for a
reversible phase change. A summary of the results of parameter variation

studies, including the previous year's effort, is also given in that section.
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2-SUMMARY

This report describes an extension of work reported previously on the
equation of state of playa from Area 5 of the Nevada Test Site. As in the
previous effort the work was concerned with (1) experimental determination
of the equation of state, (2) theoretical interpretation of the experimental i
data, and extrapolation by semitheoretical means to pressure and temperature
regimes beyond the experimental range, and (3) shock calculations to indicate
the sensitivity of spherical shock propagation to reasonable variations in the

equation of state.

The experimental work was extended to include the determination of
release isentropes from shocked states in both dry and moist playa. These
curves appear relatively uncomplicated where the peak pressure is less than
100 kbar, indicating only some degree of compaction by the fact that the free-

surface velocity is less than twice the shock particle velocity.

The release curves from a shock pressure of about 270 kbar, however,
shows two interesting features. For dry playa the initial slope (high pressure)
of the isentrope is very steep in both the P-u and P-V planes. The fact that
it is steeper than the Hugoniot in the P~V plane is clear evidence of some
form of change of state since such behavior for a simple fluid would violate
the shock stability condition. The most reasonable explanation, consistent
with other independent observations, is that the quartz component of the playa
is converting irreversibly to stishovite. At lower pressures the isentrope

from 270 kbar becomes shallow, possibly due to reconversion of stishovite to
quartz.

The isentropes for moist playa also appear to be uncomplicated from

S e B

shock pressures of about 100 kbar. For the higher shock pressures the free-

= o

surface velocity is appreciably higher than twice the shock particle velocity.
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It seems likely that this is due to vaporization of the water on release of
pressure, and resulting rapid expansion of steam ahead of the surface of the
solid. The experiments also determined the Hugoniot curves for moist playa.
These results show that the effect of water on the Hugoniot can be predicted
accurately enough for engineering applications by assuming that the solid and

the liquid are shocked along their respective Hugoniots and that pressure
equilibrium is obtained. The question of thermal equilibrium is thereby ignored,
and the model is clearly oversimplified. Nevertheless, it is found empirically

that satisfactory agreement is obtained.

A few shock experiments at very low pressures were performed to investi-
gate the region in which compaction to crystal density occurs. The results
should be regarded as tentative, but indicate a precursor wave of about 0.1
kbar amplitude traveling at a velocity of 0.5 km/sec. More thorough investi-

gation of this pressure range should be conducted before definite conclusions are

drawn.

The theoretical work during this period presents a general review of
approaches to the problem of predicting an equation of state. It also presents
a thorough treatment of the thermodynamics of the general Mie~Gruneisen
formulation and shows the differences in the forms used by different authors.
Finally, an elementary description is given of the assumptions upon which

asymptotic high pressure and temperature forms are based.

Because of the evidence for polymorphism in the solid constituents and
vaporization of moisture in the playa, and because these effects cannot now
be easily treated theoretically, a considerable effort was devoted to the effects
of a phase change on both the equation of state and on shock propagation.
Comparison of the predicted Hugoniots in the coexistence region for iron and
quartz with experimental measurements shows substantial discrepancies.
These may be due to incorrect interpretation of the data, or to nonequilibrium

effects. The results for bismuth agree reasonably with theory.

Shock propagation calculations were extended to include in a qualitative
way the major features of a phase transition, and typical pressure profiles

and decay curves are shown.



In general, the two-year program has established the Hugoniot equation
of state from 40 to 500 kbar including the effects of variable porosity and
moisture content. Some release isentropes were measured and preliminary
measurements in the very low pressure region obtained. A relatively simple
theoretical equation of state was developed that, inthe absence of phase changes,
appears adequate for playa and perhaps other earth materials. A major
remaining difficulty, however, is the prediction and proper treatment of phase
changes; progress was made in the application of thermodynamics to this
problem. Shock calculations for a simple energy source and spherical
geometry showed that peak pressures as a function of radial distance are not
highly dependent on uncertainties or variations in the equation of state and
some insight into reasons for this insensitivity wus gained. Of potential
importance to interpretation of field measurements are the pulse shapes
associated with phase changes because it is often tacitly assumed that the
peak pressure is closely associated with the first shock arrival.

Possible directions for extension ofthis work include:
1) More thorough investigation of the very low pressure range where
the material is not completely compacted.

2) Further investigation of phase changes, due to polymorphism and to
vaporization, theoretically and experimentally.

3) Model tests in which shock propagation and decay can be compared
with predictions based on the equaticn of state as established thus far.
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3-EXPERIMENTS
G. D. Anderson, J. T. Rosenberg, and A. L. Fahrenbruch

A. INTRODUCTION

The purpose of the experimental program to be discussed is to gather
shock wave data on Nevada Test Site playa which can be combined with existing
theory to yield an equation of state suitable for machine flow calculations. The
current experimental phase is a continuation of a program which was begun in
mid 1963. The explosive systems and streak camera techniques used in ob-
taining Hugoniot data were described in an earlier report1 which summarized
the work at the end of the first year. During the first year the effort was di-
rected toward gathering Hugoniot data on dry playa. It was found that it was
necessary to reconstitute samples by pressing sifted soil in order to obtain sat-
isfactory streak camera records. The native material contained inhomogenei-
ties in density which were large on the scale of the experiments. These inhomo-
geneities lead to irregular or 'ragged' shock fronts passing through the samples
which destroyed the necessary precision. Samples which were pressed from
soil which had been sifted proved to be quite satisfactory. X-ray analysis and
streak camera records both indicated a uniform density. The initial densities
of the dry material were 1.95 g/cm3 and 1.55 g/cms. The fully completed
crystal density was measured to be 2. 65 g/cm3. The densities of the pressed
samples studied were greater than the native dry density of the soil (1. 39 g/cm3)
as it was found to be necessary to press to higher densities in order to obtain
samples which were mechanically strong enough to be used in experiments.
The two densities were chosen so as to generate two Hugoniots for the purpose
of estimating the role of thermal pressure. No large difference between
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Hugoniots was observed. In the course of the present work the measurement
of the Hugoniot of dry material has been repeated with good agreement with
earlier data.

The work of the first year, which has just been briefly summarized, was
expanded in three directions during the second year. Each of the three new
phases brought new problems which required technique development. The
three phases were the measurement of the Hugoniot of moist playa and evalua-
tion of the effect of water, the study of release isentropes including free-surface
velocity, and the study of the low pressure behavior of dry playa in the 1 kbar
region where compaction may not be complete and nonhydrostatic behavior is
expected. The Hugoniot measurements of moist playa presented the fewest
experimental problems as the tests relied heavily upon techniques developed
during the first year's effort. The isentrope measurements and the low pres-
sure studies involved new types of experiments. As the work on these phases
progressed it became clear that extensive studies would require an effort much
larger than the present one. However, significant progress was made toward

the perfection of the new techniques and some preliminary data were obtained.

B. SAMPLE PREPARATION

During the current phase of this program an effort has been made to im-
prove the existing techniques of dry sample preparation and to develop a method
of constructing high quality samples of uniform moisture content and density.
For reasons already discussed, the playa as it is received from the field is

unsuitable for small scale shock wave tests.

The initial step in preparing a soil stock from which to construct test
samples is to shake the soil through a series of sieves. All that passes through
a No. 50 sieve (297 micron openings) is recovered. The material at this
stage contains 5 to 6 percent moisture by weight. A portion of this soil is dried
in an oven at 105°C to be used at a later time as a diluent to a high moisture
content stock in the preparation of specimens of various intermediate moisture

contents.

10



(1) Control of Moisture Content

To prepare homogeneous high moisture soil, a weighed amount of the
ambient soil is placed in a 400- to 600-ml beaker, leveled, and covered with
four or five layers of filter paper cut to fit snugly in the beaker. It is
important that the height to diameter ratio of the soil does not exceed one. The
filter papers are then covered with several layers of paper towel. Water is
added to the paper towel which absorbs the moisture and allows it to slowly
diffuse down through the filter paper into the soil. No more than 8 to 10 g of
water should be added at one time and not more than 1/8 of the total water
should be added in any 12 Lo 24 hour period. After addition of the water the
beaker is sealed and allowed to stand for at least one day. Before more
water is added, the soil is poured into a larger beaker and thoroughly stirred.
It is then replaced in the smaller beaker and covered with the filter paper and
towels prior to adding more water. This slow process of water addition is
repeated until the desired moisture content is achieved. Upon completion of
this process the moist soil is stored in stoppered flasks. Soil samples of
intermediate moisture content are made by mixing the moist material just
described with the oven dried soil in the appropriate proportions and storing

for one day in a stoppered flask.

(2) Sample Pressing

Since the low density samples are fragile and require some external sup-
port after removal from the pressing die, they are pressed in steel rings of
1/8-inch wall thickness. Prior to pressing, one face of the ring is covered
with 0.0007-inch Mylar which is aluminized on one side. The Mylar is bonded
to the ring to form a seal and then the assembly is weighed. The Mylar covered
ring is bolted in the pressing die so that the ring and die axes are parallel. A
predetermined quantity of soil is then poured into the die and spread uniformly
with a leveling tool. At the time of pressing, all soil contains some moisture
since it has been found that samples pressed from dry material crack upon
pressure release. Dry samples are pressed from soil initially containing a
small amount of moisture and then dried in an oven at 105°C for several hours
after pressing. The density is controlled by pressing a weighed amount of soil

into a given volume fixed by a series of stops on the pressing die. .

11 ;
f



All samples are weighed immediately after pressing and those to be di.ed
are then placed in an oven. Moist samples are sealed in the rings by
0.0003-inch Mylar to prevent moisture loss, reweighed, and mounted on the
driver plate. Moist samples are not made until just prior to shooting in order

to minimize moisture loss which would occur during long periods of storage.

Samples of density less than 1.9 g/cm3 are pressed in steel rings which
serve a dual purpose. They provide lateral support for the samples which at
low densities are relatively fragile. Also they are a convenient support point
at which to glue the aluminized Mylar which covers the playa to hermetically
seal it and to record the arrival of the shock wave. The pressing process
assures that the playa will be in intimate contact with this aluminized Mylar
top. Similarly, care is taken that there will be good surface to surface contact
between the bottom of the sample and the lapped 2024 aluminum driver plate
by pressing the sample to a thickness several mils greater than that of the
support ring. In the case of dry samples, which may be kept free of moisture
during delays between pressing and mounting on the shot assembly by storage
either in an oven or a desiccator, the playa could be mounted in direct contact

with the aluminum driver surface.

Samples of density greater than 1.9 g/ cm3 require no lateral support and
are pressed free standing. In the shot assembly a plastic ring, again thinner
than the sample, is used as an anchor to which to attach the aluminized Mylar.
These samples are not stored between pressing and mounting, hence both dry
and moist specimens are attached directly to the driver plate surface with no

intermediate layer of Mylar.

12



C. HIGH PRESSURE SHOCK WAVE EXPERIMENTS

(1) Hugoniot Experiments

The Hugoniot data for all samples were obtained by the impedance match
method2 which is described quite completely in Section 3. B (2) of Reference 1.
This method permits determination of a point on the Hugoniot of an unknown
material from knowledge of the shock velocity alone, if the shock is introduced
into the unknown through a standard material whose Hugoniot and relief cross
curves are well known. 2024 Aluminum was used as a standard; its Hugoniot
and calculated isentropic relief curves were obtained by private communication
from Dr. R. G. McQueen at Los Alamos Scientific Laboratory.

The 2024 aluminum driver plate used as a standard on the Hugoniot experi-
ments is nominally 8 inches in diameter and 3/8 inches thick, the dimensions
varying somewhat from shot to shot. A plane shock wave is induced into the
driver either by detonation of an explosive train in contact or by impact of an
explosively driven flying plate as described in Section 3.B. (1) of Reference 1.
The measurements necessary to apply the impedance mismatch method -~ (free-
surface velocity of the aluminum driver plate and shock velocity in the playa
sample) -- are made in the manner described in Reference 1. Some detail re-
finements have been made in order to attain a higher degree of precision in
these measurements. For example, each experiment includes two independent
measurements of the free-surface velocity of the driver. The thickness of
shims used to protect gapped mirrors from air shock has been reduced from
0.006 to 0.004 inches with the result that pertubations upon the values of
velocities measured by these mirrors is negligibly small after corrections.

No samples or arrival mirrors are located at the center of the aluminum
driver in experiments involving flying plates since it has been noted that in
some cases the shock wave arriving at the front surface of the driver plate

has a small radially symmetric dimple, in both pressure and shape. The
precision of the playa pressing process has been increased during the course of

13



the project. The results of the Hugoniot measurements, in the form of graphs

and tables, are presented and discussed in a later section of this report.

(2) Release Isentrope Experiments

The problem of determining release isentropes for playa necessitated the
development of new techniques. The method chosen is again based on the im-
pedance mismatch principle. A shock of known strength in a standard aluminum
driver plate is used to introduce a shock into the playa sample in the same
manner as in the Hugoniot experiments. However in the adiabat shots a ma-
terial of lower shock impedance than soil is mounted in contact with the front
surface of the soil. As porous playa is of relatively low shock impedance, the
only suitable materials of lower shock impedance are liquids. The initial
shock propagates through the driver and playa as before until it reaches the
playa-liquid interface. There a rarefaction is reflected back into the soil, and
a shock is transmitted into the liquid. If the Hugoniot of the liquid is known,

a measurement of the shock velocity is sufficient to specify the state in the
liquid behind the shock. As the boundary conditions require continuity of
pressure and particle velocity at the playa-liquid interface, this state in the
liquid must be a pressure and particle velocity state on the release isentrope
of soil. The zero pressure point on the release isentrope is determined by
observing the free-surface velocity of the playa which is constrained to remain

at essentially zero pressure.

Experimentally it is much more difficult to obtain the measurements
necessary to determine adiabats than Hugoniots. All adiabat measurements
are made after the shock has passed through the playa specimen thereby
increasing the number of uncertainties which may enter the problem. In the
Hugoniot experiments an aluminum driver is used, whereas in the adiabat
shots one can think of the shock being introduced into the liquid by a playa

driver.

The final experimental design chosen for the release isentrope experi-
ments is shown in Fig. 3-1 and will be described below. Each assembly yields
a Hugoniot point and three points on the release isentrope from that Hugoniot

point. For shots in which the explosive is in contact with the driver plate, the
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driver thickness is 3/4 inch. For shots in which a flyer plate with a free run
is used to initiate the shock, the driver thickness is 1/8 inch. The reasons
for this difference in driver thickness and the explosive systems used in each
case will be discussed later in this section. The smear camera trace from
slit 1 gives two independent records of the free-surface velocity in the driver
at approximately the same radial distance from the center of the driver plate
ac the observations on the state in the playa and liquids are taken. For each
of these measurements the shock arrival at the free surface is recorded, and
the transit time of the free surface across a 1/8~inch air gap is measured. The
recording surface of the gapped1 mirror, the side toward the driver plate, is
protected from premature arrivals such as air shock by a 0.004~inch iron
shim. Since the Hugoniot of iron is known, it is possible through application
of the impedance mismatch method in an iterative manner, to correct the
observed transit time for the presence of the shim. In actual calculations the
correction is small, less than 2 percent, as the shim thickness is small com-

pared to the gap.

The points defining the release isentrope are taken from slits 2 and 3.
The playa sample of diameter 2-5/8 inches is covered with aluminized Mylar
to record shock arrival and planarity at the front surface of the specimen. On
the upper two quadrants of the cell are 1/8-inch gapped free-surface arrival
mirrors, protected by 0.004-inch iron shims as before, to measure the playa
free-surface velocity. The lower two quadrants of the cell are covered by
water and ethyl ether, both transparent liquids, to a depth of 1/8 inch. The
transparent covers of the liquid cells have a 1/4-inch-wide reflecting stripe,
protected by the customary 0. 004~-inch iron shim, to record the arrival of the
shock at the liquid free surface. On the middle slit two shock arrival mirrors
are mounted on the driver surface in order to be able to monitor the shock
velocity in the playa. This measurement is used as a consistency check only
since knowledge of the playa Hugoniot, determined in the earlier research
period, and measurement of the state in the aluminum driver are sufficient

information to specify the state in the playa by the impedance match method.
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The gapped mirrors above the aluminum driver surface are supported by
means of 1/8-inch hardened steel dowel pins whose diameters are held to
tolerances of 0.0001 inch. The dowel pin-shim-mirror assembly, which is
glued directly to the driver surface, is shown in Fig. 3-4 of reference 1.

The final uncertainty in gap thickness with such an assembly is less than

0.0002 inch and hence is negligible.

The playa specimens are supported by a steel ring of 1/8-inch height and
wall thickness. Lucite rings of the same diameter and wall thickness are
mounted concentrically on top of the playa support ring. The Lucite rings
are divided into quadrants by Lucite cross members. This assembly is hand
lapped, checked for parallelism of top and bottom, and held to maximum
deviations in thickness of 0.0005 inch. The entire assembly is covered on
top by a circular piece of slide glass with 1/4-inch-wide aluminized stripes
oriented as shown in Fig. 3-1 and mounted facing the playa specimen. Each
of the two liquid cells is checked for leaks between quadrants o1 to the outside
by filling with air at a pressure of at least 10 psi. Using air rather than liquids
to check for leaks prevents contamination of the cells and reduces the possibility
that either of the liquids used may attack any component of the cell assembly.

It is thought that water may cause the aluminized Mylar to relax or deteriorate
at a very slow rate, and similarly that ethyl ether may attack Lucite at an
cyually slow rate. It has been determined that neither of these processes
occurs during the time intervals involved in the course of firing these experi-

ments.

It has been observed that on some previous experiments the aluminized
Mylar covering the playa has pulled away from the playa surface. This is
thought to be caused by the fact that the experiments are constructed in
temperature controlled environment and fired at the test site where the ambient
temperature may typically be 20°F higher. Hence the gases filling the pores
of the sample and trapped there may expand and lift the Mylar from the surface
of the playa. To avoid such situations a system of applying an overpressure
of approximately one pound per square inch to the top surface of the aluminized
Mylar has been developed. This is accomplished by filling the two liquid
cells, opening passages to the upper two quadrants, and applying the over-
pressure by means of a balloon to the entire Lucite assembly which is still
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hermetically sealed from the outside. It is apparent from visual observations
when the Mylar has been pressed into contact with the plava surface, and hence
it is possible to apply only the minimum overpressure required. This over-
pressure is in all cases taken to be so small as not to effect the initial densities

of either liquid.

A typical smear camera record from such an experiment is shown in
Fig. 3-2. Fig. 3-2(a) is a still photograph of the shot face with the image of
the streak camera slits exposed over it. The streak camera record is shown
in Fig. 3-2(). The record from slit 1 yields the transit time of the aluminum
driver free surface across a 1/8~inch gap. The record from slits 2 and 3
yield the release isentrope data. The measurement of shock velocity through
the playa from slit 2 is not as precise as the shock velocity measurements
from shots designed to deterinined playa Hugoniot points. This loss of preci-
sion occurs because the samples used for isentrope measurement are of large
diameter to permit all measurements for a single isentrope to be taken from
the same sample raised to a uniform Hugoniot state by the initial shock. Due
to the large diameter of the samples, shape and arrival time of the shock at
the driver playa interface on slit 2 are not well known. However, the accuracy
of the measurement is sufficient for a consistency check on the state in the

playa.

The measurement of playa free-surface velocity is complicated by the fact
that playa, being a porous r aterial, is subject to jetting as the shock arrives
at the free surface. The effect of such jetting is to cause the free-surface
arrival recording mirrors to yield jagged free-surface arrivals with a
corresponding high degree of uncertainty in interpretation. In order to smooth
the jagged arrivals a shim is mounted directly on the surface of the playa.

If the shock impedance of the shim material is greater than that of playa and

if the release isentrope of playa from a doubly shocked state is not significantly
different from that for the singly shocked playa, then it can be shown that the
shim will achieve the playa free-surface velocity, through a series of wave
reflections at the playa-shim and shim-air interfaces. If the time in which the
shim accelerates to the playa free-surface velocity through the wave reflections

is small, then its presence will have a negligible effect upon the value measured

18
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for the playa free-surface velocity. On slit 2 of Fig, 3-2(a), a 0.003-inch
aluminum shiia was used and on slit 3 no shim was used on the playa free
surface. Aluminum is a more suitable material for such a shim than iron or
steel since it is of lower impedance thereby introducing a smaller pertubation
on the state of the playa. Since the shock and rarefaction velocities of alumi-
num are higher than in iron, it will reach equilibrium in shorter time. Also,
fewer wave reflections are required to achieve equilibrium because of the
closer impedance match to playa. The free-surface record from slit 2 provides
direct experimental examination of the shim effect. The shim was purposely
cut wider than the free-surface arrival mirror number 5. The shim, labeled 7,
can be seen protruding from either side of mirror 5 on Fig. 3-2(a). Along the
free-surface quadrant there is a distinct line at approximately the same point
in time at which the free surface impacts its arrival mirror. This is due to
air trapped between the playa free surface and the glass cover of the Lucite
cell luminescing as shocks reflect back and forth raising its temperature.

The record shows quite clearly a time interval, tS , between the luminescence
due to the arrival of the accelerated shim and due to the unobstructed free
surface. The shim arrives later. When the total transit time of the shim on
the free surface is corrected by this factor there is very satisfactory agree-
ment between the two free-surface cells. This effect will be discussed further
when the data are presented. The designations A and B are used on mirrors
number 4 in Fig. 3-2(a) to point out that the aluminized Mylar on the playa is
being observed through an air gap and a liquid cell respectively.

(3) Explosive Assemblies for Hugoniot Release Isentrope Experiments

The explosive assemblies used to initiate the shock in the driver for the
Hugoniot experiments are discussed in section 3.B. (1) of reference 1. The
only change made during the experimental period is that the free run distance
of the 1/8-inch stainless steel flying plates is reduced from 1-1/2 inches to
1 inch. For the adiabat shots, however, the problem of attenuation of the
shock amplitude with distance as the wave progresses through the experiment
is more severe since measuren.ents are made over twice as long an interval
from the driver surface as in Hugoniot experiments. For shots in which the

explosive is in contact with the back surface of the driver plate one would like
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to use a configuration which gives a long, relatively flat, pressure pulse at the
front of the driver. It has been shown in this laboratory3 that a slowly decaying
pressure pulse can be obtained in an aluminum plate from an explosive train of
plane-wave lens, Comp B, and Baratol, if the ratio of the thickness of Baratol
to that of Comp B is 2 to 1 and the aluminum plate is at least 1/2 inch thick.
Such a system is used and produces a shock of approximately 180 kbar in alumi-
num with planarity of breakout at the front surface on the order of 0.01 usec
variation along a 3-inch slit length. Shock attenuation, which is inevitable due
to the inherent characteristics of an explosive detonation, is not monitored
directly, but by Gregson's report should not be a source of difficulty.

Wave initiation by flying plates seems desirable for two reasons. Higher
shock amplitudes are possible than for in-contact shots since the flyer plate
receives momentum gradually over its free run and then gives it up rapidly on
impact thereby delivering an impulse in a short time resulting in high pressures.
In addition to higher pressures, it is in principle possible to achieve flatter
topped pressure profiles via the impact mechanism of a flying plate. According
to hydrodynamic theory the wave should be perfectly flat until the trailing
rarefaction from the rear of the flying plate overtakes the original shock, as
discussed in reference 1. The difficulty in designing flying plate assemblies
is that not enough information is known to accurately compute the point at which
the overtaking will occur. On the basis of early results in the adiabat program
it is felt that such attenuation was taking place in the region in which measure-~
ments were being made. Hence a new system designed to minimize the
possibility of attenuation has been designed. This involves increasing the ratio
of flyer to driver plate thickness from 1/3 to 2 and changing the flyer material
to be identical with that of the driver. Earlier experiments to obtain Hugoniot
data made use of a steel flyer with an aluminum driver plate. Increasing the
flyer-to-driver-thickness ratio creates two problems. As the driver is made
thinner it becomes more difficult to machine to the necessary degree of flatness
and planarity, and as the flyer is made thicker it becomes more massive and
hence achieves lower velocities. The first problem is really one of economics
and has been met simply by increasing the care taken in the machining process
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and rejecting all unsatisfactory plates. The second problem is partially solved
by changing the flyer material to aluminum which is approximately 1/3 the
density of steel. However, since the shock impedarce of aluminum is less
than that of steel, aluminum must be accelerated to a greater velocity than
steel to produce the same target pressure upon impact. The maximum pres-
sure attained with the new system is 500 kbar in the driver whereas 700 kbar
is easily attained using 1/8-inch steel flyer plates, however, 500 kbar is
adequate for the purposes of the current release isentrope program. Previous
work has shown that shock attenuation occurs in aluminum flying plate experi-
ments earlier than is predicted on the basis of hydrodynamic calculations.

The premature attenuation is attributed to elastic relaxation due to elastic
relief waves propagating at velocities approximately 20 percent higher than
hydrodynamic values. Taking this 20 percent velocity increase into considera-
tion, time-distance analysis of the wave propagation in flyer and driver indi-
cates that the present systems should be free of attenuation within the driver-
playa-liquid assembly. The fact that the flyer and driver are of the same
material means that there is no impedance mismatch at this interface and
hence the driver may be made as thin as is desired without new disturbances
originating when reflected waves from the playa-driver interface reach driver-
flyer interface. The advantages of this are reflected in the above mentioned
calculation placing the attenuation region well beyond the time interval in which

adiabat measurements are made.

Two explosive trains are used with the new flyer plates. For intermediate
pressures the Composition B-Baratol system is used, and for high pressures
a plane-wave generator and an HMX pad are used. With the first system
driver pressures of 265 kbar are reached with maximum deviation from planar-
ity at the front of the driver being 0.03 usec over a 3 inch diameter. Because
of the flatness of the pulse produced by this particular explosive system at the
back of the flyer, spalling of the flyer, which could introduce premature
attenuation, is unlikely. The HMX system gives driver pressures of 500 kbar
and planarities of 0.01 usec over a 3 inch diameter at the front of the driver.

The observed high degree of planarity is very satisfactory.

22



D. DATA AND RESULTS

(1) Hugoniot Experiments

Hugoniots for NTS playa in five different initial states have been experi-
mentally determined. Two porosities of dry playa, by = 1.55 g/cm3 and
PO = 1.95 g/cm3 , were selected for study during the first year of the pro-
gram in order to ascertain the cffcets of thermal pressure on the equation of
state. Some Hugoniot work for dry playa of these densities has been repeated
in this experimental period to serve as a consistency check. As playa in situ
is moist, two new densities of playa containing approximately 10 percent mois-
ture, po = 1.71 g/cm3 and p0 = 2,14 g/cm3 , were studied. These two
densities were obtained by requiring that the samples, in addition to containing
approximately 10 percent moisture by weight, have the same pore volume as
the corresponding dry samples. Thus if a moist sample of density 2.14 g/cm3

were to be dried, the resulting sample would have a density of 1. 95 g/cm3 :

Finally, playa of moisture content 19 percent and initial (wet) density 1. 55 g/cm3
was examined in order to observe the effect on the Hugoniot of having the pores
filled to a high degree with water. This represents the highest moisture content
it was possible to introduce in samples of wet density 1. 55 g/cms. It corre-
sponds to 56 percent of saturation. It should be remembered when comparing
Hugoniots of dry and moist samples of the same density that there is necessarily

a variation in pore volume between the two,

The results of the Hugoniot experiments are presented in Tables 3-I to
V and, as pressure-particle velocity plots, in Figs. 3-3 to 7. The tables
are divided into direct-contact and flyer-plate shots on the basis of the manner
in which the shock is introduced into the driver. It should be noted that for
some of the very low pressure shots it was necessary to replace the standard
aluminum driver plate with one of brass. As the Hugoniot of brass is steeper
than that of aluminum, application of the impedance match method will show
that the pressure achieved in some specimen material through use of a given
explosive material and a brass driver is lower than that achieved using the
same explosive material and the standard aluminum driver. Also some shots

were fired in vacuum in order to determine if air in the pores of the playa
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Table 3-1

HUGONTOT DATA FOR NTS PLAYA

P

Moisture Content (M.C.)

0

1.55 + 0,02 g/cm®

0 percent + 0.2

DRIVER DATA PLAYA DATA
SHOT 2024
5281 E Aluminum| Shock Free-Surface| Partacle |, .
. <xPluslve Driver |SPecimen Ve ety Vi Lox Iy ikl Uy, Pressure|Final Volume

SISGEL Pressure Rk (mm/tsec) (nm/sec) |(mm/itsec) (30t ) ((m‘fg)

(kbar)

Direct contact
Pe60 +

10, 584 2" Comp B 285 10 4,01 3ol 2,08 129 0,310
al5 3.92 -- 2,09 128 0. 300
10,997 2" Comp B 275 56 3.85 3.19 2,05 122 0,302
10, 605 -- 138 32 2.58 1.37 1.23 19 0.338
10,996 -- 137 57 2,49 1. 46 1.23 47.5 0.327

*
10, 606 -- 165 31 1.90 0.852 0.821 24,4 0,367

*
10, 608 -- loo 7 1.86 0.849 0.819 2l 0,359

1/8" stainless steel
flver plates
P-do +

10, 549 3" HMX 660 12 6.38 6.13 3.64 357 0.281
11,053 37 HMX 60?2 68 6.35 -- 3. 40 334 0. 301
11,131 3" 1MX 612 i 5.85 -- 3.52 318 0,257
Ho 5.84 -- 3.52 318 0,250
11,173 TR 550 T 5. 54 ¥ 3.28 282 0,203
11,174 2 Comp B 401 75 5. 38 -- 3,02 252 0.283
3 5. 34 -- 3.04 251 0,279
10,945 2" Comp B 478 36 5.25 1.79 2,99 244 0,277
10, 6oat 2 Gl B 176 8 5. 14 5.24 2,97 239 0,271
16 5.12 -- 2,98 238 0,270
10, 586 2" Comp B 445 89 5.02 4.90 2.85 220 0,282

*
Brass driver.

Vacuum shot.

EVCIRE

5 16" staiuless steel flyer plate.
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Table 3-11
HUGONTOT DATA FOR NTS PLAYA

Fo = 1.95 1 0.02 g/(‘m3
Moisture Content (M.C.) = 0 percent + 0,2
DRIVER DATA PLAYA DATA
. 2024
SHOT . . Aluminum | q Shock Free-Surface | Particle ! .
NO. thIUS|v“ Driver [“Pecimen Velocaty Veloncity Velocity PressureiFinal Volume
SiseT Pressure Nak (nm/isec)| (mm/msec) |(mm/usec) (BEie) (cms/g)
\kllar)
Direct contact
PP-ot +
10, 467 2" Comp B 288 ES 4.55 3.13 1.93 172 0.296
D1 4.68 -- 1.92 176 0.304
10, 168 -- 158 El 3.35 1.66 1.26 82 0.321
D2 3.34 -- 1.26 82 0.323
10, 548 -- 163.4*] D18 2.57 0.895 0,772 39 0.355
D12 2.52 -- 0.775 38 0.354
1/8" stainless steel
flyer plates
P-80 +
10, 585 3" JMX 610 03 6.27 4.76 3.22 394 0.250
10, 469 2" Comp B 503 E7 5.65 -- 2.84 314 0.255
10, 690t 2" Comp B 476 4 5. 48 e 2.74 295 0.256

* Brass driver.

Vacuum shot.
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Table 3-111

HUGONTOT DATA FOR NTS PLAYA

)

Moisture Content (M.C.) =

170 4 0,01 g/cn’®

9.6 percent ¢t 0,1

DRIVER DATA PLAYA DATA
. 2024
GHOT . Aluminum (. Shock Free-Surface | Partaicle . .
NO. Explosive Specimen | . . ; Pressure|Final Volume
Syst Driver N Velocity Velocity Velocity Mibaind 3
YS-SEIT Pressure 0 (mm/isec) (rm/msec) (mm/itsec) (em ' /g)
(kbar)
[hrect contact

P-60 +

10,58 4 2" Comp B 285 v 4 1,44 3.39 1.98 150 0,325
§25 4.43 .- 1,99 146 0,325
10,605 .- 138 34 2.99 1,56 1.17 59.5 0,358
10, 698 -- lon® 3 2.36 1.19 0.795 32 0, 390
10,606 -- l65* 1 2,36 0.950 0.797 32 0, 380
1/8" stainless steel
flyer plates

P-80 +
10, 549 3" HMX 660 2 6.58 6. 46 3,50 393 0,274
10, 586 2" Comp B 145 @b 5. 40 - 2,72 250 0.291
*

Bress driver,
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Table 3-1V

HUGONTOT DATA FOR NTS PLAYA

= 9
Po = 2.

14+ 0,01 g/em®

Moisture Content (M.C.) =

9.4 percent + 0.2

DRIVER DATA

PLAYA DATA

SHO ol
y N()T F Aluminum ] Shock Free-Surface| Particle .
NO. xplosive Driver Specimen Ve oot Velocit Velocit Pressure|Final Volume
System No. Y Ao Sl ] (kbar) 3
¥ Pressure (mm/itsec) (mm/tsec) |(mm/isec) (cm”/g)
(kbar)
Direct contact
P.6) +
10, 467 2" Comp B 288 G8 5.00 3.18 1.82 196 0.295
G3 4,72 .- 1.86 187 0.282
10, 168 -- 158 Gl10 3.86 1.67 1.18 97 0.325
G2 3.78 -- 1.18 95.5 0.321
10,518 -- 16 3* w7 3552 .- 0.727 55 0.370
w3 3.60 1. 36 0.724 55.9 0.372
1/8" stainless steel
flyer plates
P-g0 +
10, 585 37 1IMX 610 wl0 6.81 6.26 3.04 444 0. 260
10, 469 2" Comp B 503 G6 6.20 5.01 2.68 359 0.264
*

Brass driver,
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Table 3-V

HUGONTOT DATA FOR NTS PLAYA

1.55 £ 0,01 g/cm?®

Po =
Moisture Content (M.C.) = 18.9 percent t 0.2
DRIVER DATA PLAYA DATA
. 2024
UL 5 Aluminum| . Shock Free-Surface | Particle R .
NO. Explosive Drav Specimen| - v 2 Ve lodi Pressure|[Final Volume
System river No elocity elocity elocaity (kbar) 3
Y Pressure i (mm/psec)| (mm/tsec) (mm/usec) {em )
(kbar)
Direct contact
P-60 +
10,997 2" Comp B 275 T9A 155 2,58 1.96 138 0. 366
10,860 .. 139 15 3. 22 1.95 1.17 58.5 0,410
10,906 -- 137 85 3.09 1.67 1.18 57 0,399
18" stainless steel
flyer plates
P-80 +
11,130 3" HMX 630 70A f.60 -- 3.52 | 360 0.301
83A-1 h. 51 .- 3.54 357 0,295
11,053 3" HMX 602 81A-1 6.08 5.86 3.44 | 324 0,280
10,861 2" Comp B 175 kY 5. 70 b. 50 . o | || To5F 0.315
10,945 2" Comp B 478 52 5.606 6,20 2,03 | 257 0.311
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FIG. 3-3 PRESSURE vs. PARTICLE VELOCITY IN NTS PLAYA

(po = 1.55 g/cm3, moisture content = 0 percent)

affects the Hugoniot. These shots are appropriately marked in the tables, On

the basis of the results it appears that any effects due to air in the pores is

smaller than experimental error.

The densities and moisture contents which specify the initial conditions of
the playa are recorded at the top of each of the tables. The quoted tolerances
in densities refer to the maximum deviations that were actually observed. The
value of the average density of any given sample is measured to within 1/4 per-

cent. The tolerances in moisture content are estimates based upon observations
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0 9 P

of tre rates at which dry and moist playa gain and lose moisture, and upon
known variations in the moisture content of the stocks from which nominally

similar samples were pressed.

Playa free-surface velocities have been measured in many of the Hugoniot
experiments. The purpose of these measurements is to give insight into the
qualitative behavior of the frec-surface velocity as a function of pressure.
Inclined mirrors rather than gapped mirrors are used since inclined mirrors
monitor free-surface velocity continuously, and are able to observe any struc-
ture which the shock might have such as a double wave induced by a phase

transition. Iron shims are used on the free surface whereas in the more
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(py - 1.70 g/cm3, moisture content = 9.6 percent)

sophisticated adiabat experiments aluminum shims were used as described in

a previous section. Free-surface velocities measured using aluminum shims
indicate that the free-surface velocities measured earlier using iron shims

were systematically low. The variation is on the order of 10 percent at 100 kbar,
and less than 2 percent above 300 kbar. This variation is probably due to shock
attenuation as the wave passes through the experiment and to the nonnegligible
time required for the shim to accelerate to the playa free-surface velocity. In
addition, the random error is greater for measurements made with inclined
mirrors than gapped mirrors since the inclined are more sensitive to shock tilt

and curvature. The resulting free-surface velocity measurements are useful for
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FIG. 3-6 PRESSURE vs. PARTICLE VELOCITY IN NTS PLAYA

(g - 214 g cm?3, moisture content 9.4 percent)

giving the general nature of free-surface velocity dependence on parameters
such as shock velocity or pressure, and for showing the relative changes in
free-surface velocity with the variation of the density and moisture content.

Figures 3-3 to 3-9 show the experimental results in the form of five pres-
sure, particle-velocity plots, and two pressure specific volume plots for playa
in the various initial states. Figure 3-3, p o 1.55 g/cm3 , moisture con-
tent = O percent, has error brackets on two typical points. These are
representative of the errors to be associated with points in the high and low
pressure ranges of cach of the Hugoniots. They are probable random error,

rather than maximum error, calculated from estimates of the uncertainty in
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FIG. 3-7 PRESSURE vs. PARTICLE VELOCITY IN NTS PLAYA
(PO = 1,55 g/cm3, moisture content - 18.9 percent)

sample density, shock path length, shock curvature, and shock transit time
as recorded by the smear camera. The error estimate is lower than in the
previous year partially because of technique refinements, but primarily because

of the availability of a new film reader having considerably better resolution

than that which was previously attainable.

The five Hugoniots are distinct in the pressure, particle-velocity plane
mostly because of the variation in initial densities. The data presented in -
the thermodynamic plane, pressure-specific volume, are less sensitive to the

initial density and the various Hugoniots are much closer. In fact, after initial -4

E >3
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FIG. 3-8 HUGONIOT AND RELEASE ISENTROPES FOR NTS PLAYA

(rg 1.55¢ cm3, moisture content - 0 percent)

porosity has been removed, the only significant difference between the various
samples is due to the moisture content and is relatively small. It is interesting
to note that in the P-V plane it is possible to generate the Hugoniot of moist
playa, Py = 1.55 g/cm3 , moisture content 19 percent, in the intermediate
pressure region quite closely from the Hugoniots of water and of dry playa of
the same density. This is done by making the simple assumption that the water
and playa making up a moist sample act independently and are at the same
pressure behind the shock. Differences in temperature are neglected. Since
both Hugoniots are known, one can add together the specific volumes of playa
and water at various pressures, in the relative proportions which each are
present in the sample, to obtain specific volumes of moist playa at those
pressures. In this way a Hugoniot may be generated which agrees quite closely
with the measured one. This model for moist playa is certainly a gross over-

simplification of the actual material, hence it is interesting that calculations
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FIG. 3-9 HUGONIOT AND RELEASE ISENTROPES FOR NTS PLAYA
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hased upon it are not greatly different from actual measurements. A similar
result was reported last year (1) based on Sandia data for dry and saturated

sandstone.

(2) Adiabat Experiments

The results of the adiabat measurements are presented in Table 3-VI and
Figs. 3-10 and 3-11. The table is again divided into two categories according
to whether the wave was initiated in the driver by a flying plate or by explosive
in contact. Release isentropes are measured for only two of the five initial
playa states which were examined during the Hugoniot experiments. It is felt
that the other initial states would not yield significantly different results and
hence did not warrant the additional effort. The two states examined are both
of density 1.55 g/cm3, one dry, the other of moisture content 19 percent. The
tolerances on the soil sample parameters are as quoted in the previous section

o

on Hugoniot experiments.
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Table 3-VI

RELEASE TSENTROPE DATA FOR NTS PLAYA

I

.55 1

0,01 g'cm

3

DRIVER DATA

ADITABAT DATA

o (PR
hggT Exp " Aluminum Initial Shock Free=Surface | Particle P el
' 'J (HSl Driver Material Densiyty | Veloacaty Velocaty Velocaty rﬁ?sqxp
SO P Pressure g (mm fisec) (mm tsee) (mm Hsec) L
(kba ) Gl )
Aluminum flyer*
;vlnte
P-80 +
11, 447 SRINTITAN 512 Plava 1,55 o 5,65 3,11 202
MO = 0%
Fthy! Ether| 0,708 6.54 -- 3,24 152
H.,0 0,997 6,00 -- 3,20 2R
11, 456 1" Comp B + 204 v, 1.35 .- 3, 37 1,99 lin
2" Baratol MLt a
H,0 0,007 5.01 - 1.93 an
H.,0 0,997 1.04 .- 1.88 a2
11, 458 47 HMX 617 Playa 1.55 .- 7.41 3.07 281
MLCo= 10,30
Ethyl Fther] 0,708 6,85 -- .42 171
H.O 0,007 h.86 = 3,36 230
11,450 1" Comp B+ 205 'laya s .- 165 1,93 130
2" Baratol Vo= 10,39
Fthyl Either| 0.708 4,91 -- 2,30 80
H,0 0,947 5.03 .- 1.95 98
Direct contact
P-80 +
11, 457 17 Comp B+ 181 Playa Iy 50 -- 2, 80 1.4 80,5
2" par-tol ML= 19,39
Fthy!l Ether]| 0,708 1,19 -- 1.80 53
H 0 0,497 1,36 .- 1.53 G
11, 446 1) Comp B+ 183 Playa 1.55 -- 2,36 1.52 AR
2" Raratol MLCo= 0%
kthyl Ether| 0,708 1.08 -- 1.74 50
H,0 0,007 1,30 S0 1.51 ho.0

* '
1/'  lucite buffer, 1/t

t playa pressures and particle vel

known playa Hugumiot.

’
“ Al flyer and 1/8
oeities are anferred from measurement of Al driver free-surface velocity and

Al driver.
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Each shot yields four points defining one release isentrope as described in
an earlier section. In the release isentrope experiments, the Hugoniot state
from which the release occurs is not directly measured. Since the Hugoniot
in the pressure, particle-velocity plane is quite well defined from all previous
data. in the present experiments it is inferred from a measurement of the state in
the aluminum driver. The three release states are determined by measurement
of the shock velocity through the liquid reflectors and the free-surface velocity
of the playa. Typical tolerances are shown in Fig. 3-10 for points on the high
and low release isentrope. These tolerances are calculated by a similar method
to that used in the Hugoniot program. Rectangular tolerance bars are not used
since in this case one wants to know the variation possible in a curve centered
on the Hugoniot rather than at the origin, and the projection of rectangular hars
in that direction does not cover the entire error region. The tolerances shown
for the free-surface velocities are the deviations from the average of the two

values measured on each shot.

It should be noted that the intermediate pressure release isentropes for
both moist and dry playa contain fewer points than the other isentropes. For
the dry playa both liquid cells were filled with water as the seal between them
was ruptured after the leak testing procedure. Hence there were three water
cells fired with the intermediate pressure driver system. All of these cells
recorded the same shock velocity within experimental error. This shock
velocity is anomalously low in the sense that the resulting release isentrope
points are not credible on physical grounds. On a pressure-particle velocity
plot the isentrope points fall at lower pressure and lower particle velocity than
the Hugoniot points from which they originate. This phenomenon could be
explained by postulating that there exists a double wave in water, and that the
veloceity which is being measured is that associated with the first wave. In
support of this explanation it should be noted that the Russians4 have reported
a phase transition in water with the velocity of the first wave being within
10 percent of the velocity we have observed. These three points are recorded

on the graph but are not taken into account in sketching the shapes of the
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release isentropes. As four points are not sufficient to determine the structure,

if any, of the isentropes, they are assumed to be smooth curves.

An interesting difference exists between the free-surface velocities for the
two moisture content playas. For dry playa the free-surface velocity is always
less thantwice the particle velocity behind the initial shock. For moist playa of
the same density the free-surface velocity is greater than twice the particle
velocity except for the lowest pressure in which case it is almost exactly twice
the particle velocity. Free-surface velocity data for the moist playa may in-
dicate either an expansion to a volume considerably greater than the initial
volume or, upon release, the water may be vaporized and thus produce a free-
surface velocity much greater than that of dry playa. Some of the early shots
using inclined mirrors to record free-surface velocities, indicated that the
mirror was sustaining two impulses such as could be delivered by the moist
playa if wuter vapor and then playa struck it successively. As the scope of
the project did not permit further examination of this hypothesis, it should
be borne in mind that the free-surface velocities recorded here refer to the first
material to arrive at the recording mirror. The velocity is characteristic of
moist playa and is reproducible to the accuracy shown by the tolerance bars

on the graph.

Since the impedance match technique, making use of thecontinuity of pressure,
and particle velocity across an interface between two media, is used to measure
both release adiabats and Hugoniots, the data are naturally obtained in the form
of pressure, particle-velocity states., The conversion of a Hugoniot pressure-
particle velocity state to a pressure-volume state is quite readily achieved
through the application of the Rankine-Hugoniot jump conditions. Pressure-
particle velocity adiabat points cannot be as readily converted to pressure-
volume points. This is because the transition from the initial Hugoniot state
to a state of lower pressure and higher particle velocity and volume is
achieved hy a continuous process through a rarefaction wave rather than an
essentially discontinuous jump as in a shock. Consequently, the jump condi--
tions relating the two states in the case of a shock must be replaced by an

integration between the two states which involves all intermediate states.
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Applying the equations for isentropic flow the volume at some state in a rarefac-

tion wave relieving the material from a shocked state is given by

u

) _ du
V=V, f (@P/du)_
&

where V] and u, are the volume and particle velocity state hehind the initial
shock. If the isentropic pressure, particle-velocity curves are known, the

derivative (dP/du )S can he calculated and the integral evaluated.

Smooth curves have been drawn through the experimental adiabats in the
P-u plane in order to map them into the P-V plane. If slightly different
curves were drawn through the data different P-V adiahats would result so
that the curves shown in Figs. 3-8 and 3-9 are somewhat arbitrary. However,
some quantitative conclusions can he drawn from the general shapes of the
curves. The adiabats coming from the higher pressure Hugoniot points indicate
the adiabat is quite steep in the P-u plane compared to the Hugoniot. This
behavior is also apparent in the P-V plane. Such a phenomenon has been
observed also in tuff. 2 This small increase in volume or particle velocity
with decreasing pressure upon release can be explained by assuming a poly-
morphic phase change occurring at the higher pressures. As approximately
50 percent of the playa is silica it is reasonable to suspect a transition to
stishovite. The adiabats releasing the material from the lower pressure states
behave in a more normal manner. The calculaied adiabat for the moist playa
(po = 1.55, moisture 18.9 percent by weight) releasing from the highest
pressure point indicates an extremely large specific volume,1.65 cm3/g, upon
release to zero pressurc. This value of the volume is again dependent upon
the assumed curve in the pressure, particle-velocity phase for the isentrope.
However, the high free-surface velocities observed for this moist material at

high pressures imply a zero pressure volume larger than the initial specific
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volume. The effect of moisture in the soil appears significant in releasing
from the higher pressures. This behavior may be due to vaporization of the

water as the pressure is released.

Values of I', Griincisen's ratio, have been estimated from the slopes of
the Hugoniots and isentropes of dry playa at their point of intersection. The
value for the lower pressure isentrope is I’ = 1.3. At the higher pressure
point I' = - 16 . This anomalous value results from the possible phase

change.

E. LOW PRESSURE SHOCK WAVE EXPERIMENTS

The extremely low stress levels, less than 1 kbar, may well be the most
important stress region for study from the point of view of application. In the
case of a blast occurring in or near the earth the majority of the medium
affected by the ensuing wave motion will be subjected to stresses in this regime.
Snme preliminary dynamic data on the behavior of dry playa of initial density
1.55 g/cm3 were obtained. Since the techniques of inducing very low ampli-
tude waves into soil samples and recording the amplitudes and velocities were
unlike any techniques used in other phases of this program, the largest part of
the effort went into technique development. The low amplitude waves were
induced by a low velocity gas gun projectile and the stress-time recording

was done with a quartz pressure transducer.

(1) The Gas Gun

The gun consists of a smooth hore 2-1/2-inch-inside-diameter barrel which
is evacuated ahead of the projectile. The projectile is accelerated down the
barrel by gas introduced from a high pressure reservoir. Carefully spaced
electrical pins measure the projectile velocity near the target assembly as
shown in Fig. 3-12. The mass and length of the 2-1/2-inch-diameter pro-
jectile are variable and may be chosen to accommodate each experiment. At
the present time the maximum projectile velocity is approximately 0.7 mm/
usec. In the present study a low velocity of about 0.3 mm/usec or 100 ft/sec
is necessary. The main problems encountered using slow projectiles are

velocity control and tilt. The tilt, a measure of the deviation from parallel
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of the target and projectile surfaces at impact, is measured by four arrival
pins in the target assembly. These pins are shorted, giving rise to electrical
pulses, by the projectile as it strikes the target. The pulses, which are
binary coded to assure later identification, are displayed in sequence on an
oscilloscope. The time interval between the first and last closure measures
the total tilt.

(2) The Quartz Pressure Transducer

The quartz gage consists of an x-cut quartz disk which has a conducting
layer evaporated on both flat surfaces. A circular groove, which is con-
centric with the disk and is called the guard ring, is machined into one face
and divides the disk electrically into two regions. Only the portion of the
quartz gage within the guard ring is used for recording. The outer portion
is to minimize edge effects and maintain a uniform electric field in the

recording area.

When a pressure pulse traverses the quartz, a voltage proportionalto the
difference in stresses at the two faces is generated. The gage is calibrated
to a pressure of 25 kbar and records for a time interval equal to the transit
time of a wave through the crystal. The sensitivity of the gage is about
0.8 volts/kbar. A more comprehensive treatment of the behavior of the quartz

6
gage is given by Graham et al.

(3) Shot Assembly and Data

Dry playa samples of initial density 1.55 g/ cm3 prepared in the manrer
described earlier were used in the low pressure studies. The samples were
2-1/2 inches in diameter and approximately 1/8 inch thick. The shot assembly
which is mounted over the end of the gun barrel is shown in Fig. 3-13. The
projectile strikes an aluminum driver plate inducing a pressure pulse into it.

The driver plate transmits the pulse to the sample. Upon reaching the soil -



39VO ANV 3ITdWVS ONIMOHS ATISW3SSVY LOHS d4O Sivi3a €I-€ '9id

*2-oh0s - v
SNINOILISOd
1398VL 804 S30H

LNINNDITY
139MVL HO4 SM3MHDS

—— ‘\

ONIH ONILNNOW Q04INY
ONIY 1HOddNS 13318

I dNVS

39vV9 Z14V¥No

SAv3IA SSYT HLIM AXOd3 L-D
300812373 H3LNID WOM4 XVO0D
ONIH QHYND WOM4 XV0D

ONIMOB L394VL
3ONA3H OL YIBNTHD WNNOWA

NOILOINNOD NNN3VA

-

\\ AUVId H3IAINO NONINNTY \
ﬁa_ _,V////J/////;ﬂ//é. N

.l! 2 A L2 VL L TITLSTTSTSSS '.?IIIIII

R

(#)SNid 1711 3NLIIrONd —

7

/ /IfffffflflfffffffffflffIff/flllllﬂ

|

\

‘

45

g




t

- R aat AR

————— e
et e —

quartz interface the pressure pulse is reflected back into the soil and trans-
mitted to the quartz. During the time of passage of the initial pulse through
the quartz, the pressure at the quartz-soil interface is recorded by the
transducer.

An aluminum driver plate was used rather than impacting the projectile
directly into the sample. Since the gun barrel is evacuated this arrangement
is much simpler experimentally. Very low projectile velocities were used
so as not to exceed the Hugoniot elastic limit of the driver plate. If a double
wave systern emerges from the aluminum the interpretation of the gage
record becomes more confused in looking for a double wave system in the
soil, The aluminum driver is equipped with pins to measure projectile tilt
upon impact. A layer of aluminum foil is placed on top of the soil to provide
an electrical connection to ground for the gage. The gage is placed on the
soil sample and the entire assembly is potted in C-7 epoxy which has been
doped with glass beads 50 - 1504 in diameter. This potting is done to more
closely match the impedance of the surroundings to that of the soil and gage,
thereby minimizing edge effects. An appropriate resistor is added from the
guard ring to ground to equalize the electric field in the quartz between the

guard ring and center electrode.

Working at low projectile velocities introduces experimental problems
which are not serious at high velocities. The most serious of these problems
is tilt. Since the projectile velocity is much lower than the induced pressure
pulse velocity, large refraction effects in the wave front arise due to the
nonsimultaneity of impact. The low velocities also require extreme precision
in flatness of the colliding surfaces. An effort was made to maintain all
impacting surfaces flat and parallel within +0.0001 inches. It was found that
bowing of the target assembly due to the pressure difference when the gun
barrel is evacuated produces a nonplanarity much larger than the tolerance
specified above. To eliminate this effect an auxiliary vacuum system was
added to the back of the target. The other difficulty in working at low projectile
velocity is the reproducibility of the velocity itself. Frictional forces between
the barrel and projectile become quite important and lead to wide scatter in

velocity for the same initial accelerating gas pressure in the reservoir. A
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series of thirteen shots with no targets was fired to study this problem:. It was
found that using a massive projectile and argon rather than helium as an accel-
erating gas considerably increased the reproducibility.

The pressure-time profiles recorded hy the quartz gages for two shots
(11,467 and 11,468) are shown in Fig. 3-14. Time is increasing to the right.
Both records were subject to considerable tilt despite the precautions taken to
minimize it. These - shots were exploratory and were the only experiments
of this type perform: . Consequently, in the absence of any other data for direct
comparison, these .esults mustbe regarded as tentative. The oscilloscope rec-
ord for Shot 11,467 shows no definite double wave structure. * The abrupt change
in slope in the rise of this pulse corresponds to a pressure of about 0.09 kbar in
the quartz. The peakisat about 0. 45 kbar in the quartz. If an elastic precursor
in the soil is present, but obscured by the slow rise time due to tilt, it would
have an amplitude of 0.04 to 0. 09 kbar. The record from Shot 11,468, given by
the upper trace, clearly shows a rise, followed by a plateau and then a second S
rise. The signal on the lower trace is from the guard ring. The first and sec-
ond amplitudes from this record correspond to pressures of 0.12 and 0. 42 kbar
in quartz, respectively. Interpreting the record as indicating a double wave
structure in the soil, the first wave amplitude would be 0. 06 to 0.12 kbar.

Estimates of the wave velocities may be obtained from the time interval
between impact of the projectile on the driver and the arrival of the wave at
the soil-quartz interface as indicated on the gage record. The transit time of
the input wave through the aluminum driver must be subtracted out. This
transit time can be computed from the known Hugoniot of aluminum. The pres-
sure behind the second wave can then be estimated, ignoring the initial wave
which is small, from the wave velocity and the fact that the pressure, particle-
velocity state behind the second wave must lie on a relief cross curve of
aluminum. The pressures and particle velocities behind the main wave in the
soil calculated in this manner are presented in Table 3-VII. The pressures
obtained from the quartz gages for the main wave, which must be the pressure
behind the reflected shock in the soil at the quartz interface, are lower than
would be expected. As the impedance of x-cut quartz and aluminum are quite
close at these low pressures it would seem that the pressure in the quartz

*The amplitude of the first wave was taken as half of the initial pressure rise.
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would be at least double the initial pressure in the soil if the soil impedance
remained the same behind the shock. If the main wave crushed or compacted
the soil, one would expect the impedance to increase and the pressure to more
than double upon reflection from quartz. The results from the quartz gage
indicate a pressure less than twice the estimated initial pressure, implying
that the reflected shock Hugoniot of the soil is of smaller slope than the initial
Hugoniot in the pressure, particle-velocity plane. These results do not con-
form to any other data and since they are preliminary they must be vegarded
as quite tentative pending further investigation.

Table 3-VII

1.OW PRESSURE DATA FOR DRY NTS PLAYA

3 - APPROX IMATE APPROX IMATE
ior | SAMPLE | PROJECTILE | PROJECTILE “’""% VE"OC‘I”"‘ PRESSURE IN SOIL PARTICLE
‘Lo DENSITY | VELOCITY TILT Lufizslelc (kbar) VELOCITY BEHIND

Tl 3y | et sec) sec) SECOND WAVE
R First Second First Second (mm/isec)
11, 467 1.54 163 2.6 0.57 * 0.04]0.54 ¢t 0.04]10,.04-0,091] 0,39 0,047
11, 468 1.55 143 3.1 0.42 ¢+ 0,0410.39 ¢+ 0,04]0,06-0.121] 0,25 0.041
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A. INTRODUCTION

When attempting to obtain equations of state for porous earth media one
faces several problems in addition to those encountered with simple solids, !

namely: a

a. Already in its initial state, the mediuim is generally a three-
component system consisting of a solid phase, a gas phase
(air) and a liquic phase (water).

b. The solid phase itself is an essentially isotropic mixture of
many different compounds and/or mineralogic species.

c. The individual constituents of the solid phase are often com-
plex compounds rather than simple monatomic crystallites.

It is customary to treat the three phases as noninteracting systems so that all
thermodynamic extensive variables are obtained additively from those of each
phase and also to assume that pressure equilibrium is attained behind the
shock front and maintained during pressure release. A unique specification of
the thermodynamic state of the system requires of course further assumptions,
either that of complete thermodynamic equilibrium or specific assumptions on
the behavior of each phase under the shock transition and during pressure

release.

Similarly, the solid phase is often treated as a mixture of independent i
phases and its thermodynamic state functions are then calculated additively ]
from those of the simpler individual constituents, usually under the assumption |

of complete thermodynamic equilibrium.

Note: See List of Symbols at end of section, page 69.
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A meaningful evaluation of the validity of such assumptions would require
a better understanding of the structure of a shock front in dense mixtures and
little can be added presently to the elementary discussion given in the previous

report. -

Hugoniots for wet playas obtained as described there from the Hugoniots of
solid quartz and water are in reasonable agreement with the experimental wet
playa data. Also an estimate of the effect of a decreased Hugoniot temperature
in wet playa (as compared to dry playa) can be gained by taking successively for
the solid phase Hugoniot the experimental data of solid quartz and of dry porous
playa.

Calculated Hugoniots of solid mixtures are relatively insensitive to the
averaging procedure used7 to obtain them from the individual constituent
Hugoniots and in the absence of a better understanding of the physical mechan-
isms underlying the propagation of shock waves in solid mixtures, there are
little real grounds for selecting any one of the several averaging schemes
proposed (per weight fraction, per molar fraction, ----) in preference to the
others, the difference between the resulting Hugoniots being of the order of
the experimental uncertainty. The lack of sufficient adiabatic release data

preciudes at the present any analysis of the same problem there.

A further complicating factor in analyzing playa data is the existence of
polymorphic phase transitions for SiOz. in particular that to stishovite. In
view of the particularly large volume change and the change in coordination
number associated with this transition, the absence of conclusive experimental
evidence for or against its occurrence in dynamic compression of playa makes
any comparison of the experimental data with postulated equations of state

rather academic for the time being.

Nevertheless, one may conclude from a comparison of the experimental
data on playas and quartz and from the limited parameter variations performed
with the equation of state used here, that porous silica is a satisfactory
tentative model for the description of the thermouynamic behavior of the

Nevada playas considered in this program,
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The effects of small variations in the chemical and mineralogical composi-
tion appear of little significance in view of the other uncertainties affecting
both the experimental and theoretical situations, although such variations
could conceivably be of more importance in the (little studied) low pressure
region (< 20 kbars) and in the dynamics of eventual phase transitions.

For these reasons, the theoretical work has been based on SiO2 data

only, considered as a single thermodynamic system (see reference 1).

B. DERIVATION OF EQUATIONS OF STATE (EOS)

Presently, a direct first principles derivation of a complete EOS for
sufficiently realistic models for most physical systems is an almost impossible
task and if one requires an EOS to be valid over a relatively wide range of the
thermodynamic variables it is still necessary to resort to semiempirical for-
mulations. Most equations of state proposed so far can be grouped into four

types.

a. Purely empirical EOS: these are obtained simply by fitting
largely arbitrary analytical expressions to some experimental

data such as a Hugoniot; if such EOS may be of interest in some
calculations, they ar: but an economical way of presenting
specific experiment:1 data; they are totally inadequate for any
extrapolation and prediction purposes and generally of no
theoretical value or particular significance.

b. Semiempirical EOS: these are in principle obtained by choosing
a thermodynamically consistent functional form for some EOS

and by determining its parameters from experimental data and/

or theoretical predictions (see c.)

c. Theoretical EOS: These are obtained from first principles
according to the laws of statistical mechanics; they are
presently limited to a few simple systems (classical and

quantum) such as a free electron gas, a harmonic lattice solid,
etc., and are exact within the well defired limits of the model

and its underlying physical laws,
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d. Semitheoretical EOS: In this disparate group, one can include

many EOS which although partly derived from first princip!les,
can only be obtained by additional assumptions of an heuristic
nature whose degree of validity is difficult to assess; e.g.,

Thomas-Fermi, (TF) Thomas-Fermi-Dirac (TFD), etc.

In view of the many loose stateinenis implying the contrary, it may not be
superfluous to repeat that semitheoretical EOS such as the T-F, T-F-D, etc.,
are in no way exact EOS of a well defined model and that at the present there

exists no true estimate, in a proper mathematical sense, of their degree of

validity in any particular range of the thermodynamic variables, but only

more or less optimistic guesses as to their applicability (see later).

We shall limit ourselves here to a consideration of some semiempirical
EOS and we shall also discuss a few questions concerning the use of the T-F,
T-F-D EOS and the nature of certain corrections proposed by various authors

(see also Appendix.)

C. SOME THERMODYNAMICS OF EOST

For the reasons given earlier (see also Ref. 1), we consider here only
sinzle thermodynamical systems (homogeneous, isotropic) describable in
terms of two independent variables, taken mostly tobe V and T or E* and

T, where E* is the thermal energy.

(1) The General Mie-Gruneisen EOS

The general Mie-Gruneisen EOS is defined by the relation
I'=T(,T) (4-1)

I’ being the Mie-Gruneisen ratio defined as

'=v (g%)v = v(g—P-) (4-2)
dE E
(ﬁ)v v

\ For notation sce reference 1.
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This EOS was discussed in reference 1 and we only recall its main features:

(i) it is an incomplete EOS that leaves the cold energy Ec(V)
unspecified

(ii) it uniquely det-rmines all other adiabats of the system in
the V-T plane, these are the characteristics of the partial

differential equaticns,

TI(V, T)(%?I—,)V - v(%%) =0 (4-3)
S(V,0) = constant (= 0) (4-3a)

and so are given by
z = ¢1(V, T) = constant (4-4)

where ¢F(V, T) is a function of V,T uniquely determined by I'(V,T)

(iii) The entropy is a function of z only, arbitrary up to general
thermodynamic restrictions on admissible S(V,T)'s (positive
definite, etc.)

S = o(z) (4-4")

(iv) A complete specification of the system requires besides
I'(vV,T) the knowledge of E,(V) and that of o(z) or its
equivalent, e.g., one isobar Vpo = Vpo(T) or one
isotherm PTO = PTO(V) (To ¥ 0) or a specific heat
C = Cy (T etc.

VO VO( )

Two useful equivalent forms of the general Mie-Griineisen EOS are:

* *
por - GBI (BF)
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Pc = -4V Ec = EC(V,O) (4-5a)
and
P(V,T) = M E(V,T) + R(V,T) (4-6)
dE. TV 5g E/aT
RV = - -—% '(aT)V = - V\%‘l’)v (4-6a)

It is important to note that R is a function of V alone if and only if I' does

not depend explicitly on T,

(2) Special Cases of the General Mie-Gruneisen EOS

Two special cases of the general Mie-Griineisen EOS have been

frequently used, namely

(i) The usual Mie-Griuneisen EOS

' =T (4-7)

usually written in one of the two equivalent forms:

P-P (V) = L\(,X) IE - EC(V)] (4-8)
dE
P = ‘d_vc E, = E (V) (4-8a)
or
P = L\(,Xl T+ R(V) (4-9)
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dE
c \4
alriale %ch + R(V) (4-9a)

The explicit form of the principal thermodynamic state functions for this case

were given in reference 1, as well as further details on its use for Hugoniot and
adiabat calculations.

(ii) The Hildebrandt EOS

In any domain (To # 0, T)T where E* is a function of T only, the general
Mie-Gruneisen EOS can be put in the form

*
_ TV, T) ~dE
P - pc(v) = LLV—)T?IT

T # 0 (4-10) ;
dE . .
P, =<y E, = E(V) E = E (T)
or equivalently
dE (V)
c _ Vi
PV*Finv =« T
T # 0 (4-10")
* *
E = E (T)

These two special cases are not mutually exclusive and it can be shown that:

The usual Mie-Gruneisen EOS and the Hildebrandt one are equivalent in a
domain (To # 0,T) if and only if CV = const and E* is of the form

Ex = CVT + const , I' being then necessarily a function of V alone, given
by

VS'T (V)
0
r = ———— (4-11)
Cy
m
where STO(V) is the entropy along the To - isotherm,
TSince this special case is incompatible with the 3d law, To must be >0 . :
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In particular, one can note that a perfect gas and a Dulong-Petit solid both

satisfy this equivalence criterion.

(iii) More generally, if T'(V, T) is of the form FC(V) Ft(T)’ explicit
forms for all thermodynamic state functions can be obtained
just as for a usual Mie-Griuneisen system [ =T (V). For
other forms of T" , the characteristic equation of (4-3) cannot,
in general, be integrated in closed form and particular attention
should be given to the consistency of separate assumptions on
the forms of T (V, T) and other thermal entities such as
E* or CV 5

(3) Modified Mie-Gruneisen EOS

Several other related EOS's have been considered in the literature, in

particular the following ones,

a. As already remarked, an EOS of the form

pv,T) = LG DEw, ) + X(V) (4-12)

~

cannot be a Mie-Gruneisen EOS, i.e., the function T'(V,T) cannot--if it
depends explicitly on T--be identical to the Mie-Gruneisen ratio I' defined
by (4-2). The two functions ['(V,T) and F(V,T) are aciually related by:

r-F](3). - &

QI
i N

)v (4-13)

P~

It is possible to choose T' such that I‘O(V) = T‘(V) but then one must also

have

[L(VIE (V)
R (V) = X(V) = P (V) -—— (4-14)
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i.e., only two of the three functions X(V) (or RC(V)), EC(V) and PC(V)
(or I‘C(V)) can be chosen arbitrarily, the third one being given by Eq. (4-14)

A detailed study of this modified Mie-Gruneisen EOS, (4-12), can easily
be carried out, but will be omitted here since this form does not appear to
offer any particular advantages over the general Mie-Griineisen EOS.

b. Some authors have made use of the following EOS:8

P(v,B) = 2L E 4 x(v) (4-15)

The function E(v, E) is also distinct from the Mie-Gruneisen ratio [ if it

depends explicitly on E , the two being related by

r-a - E(g—g) (4-16)

If (4-15) is to hold along the cold isotherm, one obtains the equation

dE_ G(v, EC(V))

-7 = < E (V) + X(V) (4-17)

relating G(V,E), EC(V) , and X(V).

If the forms of G(V, E) and X(V) have been chosen a priori8 (with adjust-
able parameters determined empirically), Eq. (4-17) must be used to obtain
the cold energy Ec(V) . Such a procedure is perfectly legitimate for semi-
empirical EOS purposes, although it may be preferable to choose first the
forms of EC(V) and E(V, E) and then use Eq. (4-17) to determine X(V) .
EC(V) is a relatively accessible quantity both theoretically and experimentally
and this procedure would make easier a comparison with other formulations
and a verification of the necessary stability requirements for Ec(V) - The
more serious drawback of this formulation is that the dependence of G on
Ec and E* (and so on T) is the same and already determined by the relation
(4-17) along the cold isotherm. This rather artificial feature renders any

interpretation of the thermal dependence of G difficult and precludes any
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nonpurely numerical comparison of this EOS with other formulation and

models.

c. For these reasons, the following EOS appears preferable:

*
*
P(V,E) - P (V) = G(L\',E—l E*
(4-18)
dEC
Pe ™ "W Fe T B

The ratio G(V, E*) is again identical to the Mie-Gruneisen ratio T if and

only if it does not depend explicitly on E* , in which case Eq. (4-18) reduces

to the usual Mie-Gruneisen EOS,

In contrast to Eq. (4-15), it does not impose any a priori coupling between
the cold and thermal components of the thermodynamic state functions and
although it does not appear to offer any advantages theoretically over the general
Mie-Gruneisen EOS, it can be of interest in semiempirical EOS work and shock

calculations.

The use of so many similar but distinct EOS (and a host of other semi-
empirical and semitheorctical ones) is unfortunate inasmuch as it makes a
comparison of various authors' results a tedious and difficult process while
contributing very little but added confusion in understanding and solving the
many remaining problems in this ares  The general Mie-Griineisen EOS (or
eventually the modified Mie-Gruneisen EOS (4-18)) could provide a sufficiently
general formulation for the present needs. A systematic, unified presenta-
tion of the existing experimental and theoretical data for the many systems
inve:  ited up to now would provide one with a much better picture of the
present situation and help considerably in identifying those areas where further

work is most needed.

D. DERIVATION OF A SEMIEMPIRICAL EOS

When seeking a semi-empirical EOS for a specific system, it appears

best to proceed in successive steps as follows:
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a, First choose a suitable form for the cold energy EC(V)

b. Select then an appropriate thermodynamic type of EOS, e.g.,

the general Mie-Gruneisen EOS

c. Starting from the simplest ones, make further consistent ;
assumptions on the specific form of the thermodynamic state
functions determining the thermal componenis of the system,
c.g., '(V,T) and CV(T) :

With guidance from both experimental data (static compression, Hugoniots,
etc.) and theoretical considerations, considerable progress can be achieved in
an orderly and systematic way towards the understanding and semieiapirical n
representation of the principal factors determining the EOS of many materials
over a fairly wide range of the variables. This is well illustrated, e.g., by
the work of the Russian school (Kormer, Al'tshuler et al.) on metals (solid and
porous), recently extended to the alkali halides, which, if still unsatisfactory
in several aspects, appears nevertheless to have led to the most successful
EOS for those materials presently available.

Most purely theoretical results are limited so far to a few very simple
systems which provide in this context mainly very high density and or very
high temperature asymptotic models. The cold isotherms corresponding to
these models are reviewed in the appendix and although a similar study of the
corresponding temperature dependent ones would be of interest, its need is
diminished by the recent appearance of a comprehensive survev of the thermo-
dynamic properties of matter at high pressures and temperatures by
S. G. Brush.9 Extensions of the theory to more complex systems is the ob-
ject of considerable activity but we cannot go here into these recent develop-

ments of the many-body theory.

There also exists many more or less successful theories and calculations
of the ground state energy and first excited states of crystals near normal
densities, but little use has been made of these results in semiempirical EOS

work, this region being generally treated empirically.
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On the other hand, considerable use is made of the semi-classical statisti-
cal theories'r (T-F, T-F-D, etc.) in bridging the gap between the experi-

mentally accessible region and the simpler asymptotic models, But

""Although the T-F method is known to be approximate, the necessary
analysis of the applicability of these results has not been carried out.
In the literature there are only qualitative considerations of the non-
applicability of the method for small compressions (in the region of
low temperatures) and on the improvement of its applicability with
increase in temperature. However, the quantitative problems of the
limits of the regions of density and temperature in which the method
is applicable with a given accuracy, and on the size of the correc-
tions to the quasi-classical equations of state, remain essentially
unresolved, "

This paper and several others by the same author as well as similar investi-
gations by S. Golden, N. L. Balazs, Alfred, etc,mprosent attempts at a solu-

tion of this problem. In view of the formal nature of the developments used,

the conclusions reached are still tentative and the proper limits of applicability
of the statistical models remain unknown. The main result reached in these
studies is that inclusion of exchange effects exactly within the framework of

the semiclassical model (T-F-D) is inconsistent and that it would be more

valid to keep exchange corrections to the lowest order since higher order

times are of the same order as neglected quantum corrections, If this is the
case, it is questionable whether thesc statistical models have greater range of
validity than their leading terms in an asymptotic expansion in inverse powers of
the volume, which can be obtained directly from an electron gas model in a suit-
able background. It should also be pointed out that calculations on solvable
models along the statistical approach with quantum corrections (harmenic oscil -
lator, etc.) have been notably unsuccessful. Furthermore the conclusions
reached in the studies mentioned above are basically for isolated atoms or at
most for simple monatomic crystals and even less is known about the applica-

bility of the statistical models to polyatomic structures.

Finally, many of the semiempirical EOS for solids are not single phasc

EOS but rather those of a two~-component system: a lattice part and an

TExtensive reviews of this approach are available (sce appendix and reference 9).

TTD.A. Kirzhnits, Soviet, Physic 8, 1081 (1959).
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electronic component, the total thermodynamic state functions being obtained
additively under the assumption of complete thermodynamic equilibrium,

Such a separation corresponds to the usual adiabatic (or the static) approxi-
mation in quantum mechanics; in semiempirical EOS work, the two components
are generally taken to be noninteracting, although the Kormer et al. EOS with
variable lattice specific heat11 does couple them empirically. One should note
that in the high density asymptotic models, the separation is that into a system
of bare nuclei and one containing all the electrons while near normal densities
it is usually onc into ionic cores--(nuclei and tightly bound electrons) and a
system of conduction electrons. At the present it is still an open question
whether a smooth transition between these two regions is possible or whether
electronic phase transitions (with or without polymorphic lattice ones) must

necessarily occur,

E. SEMIEMPIRICAL EOS FOR Si02.

(1) In the previous report (reference 1), semiempirical EOS for quartz
and stishovite were given which agree reasonably well with the experimental
Hugoniot data obtained in this program and elsewhere for quartz and dry
playas, if the quartz one is used in the low pressure region and the stishovite
one in the high pressure region. Detailed calculations for the probable mixed
phase region were not made in view of the too great uncertainties affecting the

quartz-stishovite transition (see section 3)
The procedure adopted was the one described in reference 1:

(a) The ﬂi isotherm EC(V) was obtained in the form of a single
analytical expression for the whole range of V , the interpolation terms being
chosen to be compatible with the functional form of the cold energy as given by
the standard T-F asymptotic model. The use of an approximate analytical
expression for this asymptotic (T-F) EC(V) entails a negligible error as
compared to the other uncertainties of the model; the largest one of these
resultsT from the necessity of introducing an effective monatomic model* for

TSee reference 1 and the appendix.
*The averaging procedure adupted here differs from that used by L. Knopoff
and G. MacDonald (Geophys. Journ. 1, 284, 1958).
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the SiO2 complex if use is to be made of the existing T-F calculations.

(Direct T-F calculations for molecules are difficult and few are available).

(b) The usual Mie-Gruneisen EOS with constant T was adopted as a
thermal description of the system. If no phase transition occurred, a value of
I' = 2/3 can be taken as giving a crude behavior of SiO2 over the whole V-T
ronge since T = 0.65 at the reference state and = 2/3 in the very high
density and/or very high temperature asymptotic models. A higher value of
I' = 1.4 for stishovite gives closer agreement with high pressure data for
quartz although any value from 2/3 to 1. 6 leads to calculated Hugoniots within

the experimenta: error at these pressures @500 kbar).

The effect of a variable chemical composition (exclusive of water content)
expressed as a variation in effective 7 and Vo is less than that of a change
in the form of the interpolation terms and of no significance in view of the over-
all limitations of the model. The low pressure cold isotherm is of course
sensitive to the bulk modulus at the reference state but playas cannot easily
be compacted to solid density and no conclusive experimental data is avail-
able on the effect of small changes in the chemical and mineralogic composi-

tion on the bulk modulus of the soild phase.
(2) Other possible semiempirical EOS.

The form of EC(V) used here appears adequate for the present and re-
quires only three parameters determined from the initial density, initial
compressibility and sublimation energy of the solid (in addition to its chemical

composition) while converging to the high density models* at high pressure.

A simpler form could be derived in the same way by replacing the Ec
T-F term by the cold energy expression of an electron gas in a positive lattice

3h L This procedure would avoid the use of an effective monatomic

background.
model and allow a distinction between polymorphs. The correlation pressure
term of this model is known for a few lattices, but the probably more important
inhomogeneity correction is still in doubt. = Further development of such a

high density model for polyatomic substances would be worthwhile, The use of

*Nonrelativistic ones.,
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a simple constant I Mie-Gruneisen EOS is of course only a crude first

approximation. Several more complex EOS can be used with the same cold

isotherm.

(a) An EOS of the form (4-18), in preference to (4-15) for the reasons
given in §III with, e.g..T

G, B = 2+ —b
cE*p "+1
where p = V/Vo and a, b, ¢ are adjustable parameters. The parameters

would be determined as follows:

a+b=Ty(Tat V=V,T=0P =0

"a" chosen a priori to be either 2/3 (perfect gas asymptotic l1mit) or deter-
mined with ¢ by a least square fit to experimental data and temperature
dependent T-F calculations corresponding to the parameters of the effective
monatomic SiO2 model. This empirical form would serve mainly to bring
the semiempirical EOS thermal components closer to the T-F values at high
temperatures. If there is no particular problem using it for stishovite with
I‘O =~ 1.4, it may be troublesome for a -quartz in view of the low initial T
value (0. 65) resulting fromthe loose structure of this crystalline form of
SiO2 . This procedure would require a small computer program and in view of
the relative insensitivity of the experimental Hugoniot to I', it should be
based on a minimum of release adiabat points if a greater range of pressures

and/or porosity than those examined are beyond the experimental possibilitics,
(b) A Hildebrandt EOS of the form (4-10)

Assuming a purely temperature dependent E* and CV from room tem -
perature up, one could make use of an EOS of the form (4-10). CV(T) would
be taken from experimental data at the lower temperature, and extrapolated
with the eventual addition of a purely temperature dependent electronic com-~

ponent. Such a model could not recasonably be used over a very extended

1FSimilar to Tillotson's formulation based on (4-15).
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range of compression if only because of the volume dependence of the electronic
energy band gap aad electron effective mass, but may be of limited interest

for Hugoniots up to a few megabars.

(c) Two components EOS of the general form

dEc
E. = EMW Po = -
‘* T * '* * * *
ENT =E u*tk e S W = 1 = g

offer more flexibility in handling the thermal components in semi-empirical
EOS work. The cold isotherm can be handled as previously and separate
assumptions can be made on the lattice and the electronic thermal components

of the state functions.

The lattice part can be treated in any of the ways described earlier (usual
Mie-Gruneisen, Hildel,randt EOS, etc.). In particular one can use the simple
Dulong-Petit solid model (constant specific heat Cv = 3R) from some non-

zero reference temperature TO on Ti.e. ,

C,,T + const

*
E (T) Vv

*®
E (T_)
. latt' "o" | _ ., -
3H(T - Ta + 3R )- 3R(T - TG}

vV, T) = L%,!1311(1“ - T) = g (V)T + const

For materials with a relatively high Debye temperature, such a model is
rather unsatisfactory at lower temperature and it would be preferable to use

a temperature dependent CV(T) , determined from static experimental data

TAs done by Altshuler, ct al for metals ref. 12, 9,
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and a better theoretical model (Debye solid, Debye-Einstein solid, etc.). The
Hildebrandt EOS is well adapied for not too low temperatures, giving, if T0

is the reference state (room temperature e.g. )

VSl (V) gp (V)
0 0

PV, T) = =
Cy(M) ~ C,M
T
*
E latt(T) =4 CV(T)dt + const
o
gr (V)
b _ 0
D latt(T) = vV T + const

The form of CV(T) can be chosen to decrease at high temperatures from the
3R Dulong-FPetit value to the 3R/2 perfect liquid lattice value*. Since such a
model is not extendable to TO = 0, it is in our opinion best to avoid the use

of Slater or McDugall type of relations and treat gTo(V) empiricalily,

The electronic thermal component can similarly be treated in several ways,
although the quasi-free electron gas model as used by Altschuler, et.al,, for
metals is of course not applicable directly to the semi-conductors or insulators
which constitute the playas. Up to a few ev, one can use the various E*g),
P*o] ecxpressions developed for semi-conductors e.g., as Kormer et al, 1
or at higher temperatures the approximate analytical expressions resulting from
a fit to the T-F temperature calculations of Latter and others, or combine both,
The degree of validity of such assumptions is considerably more difficult to
assess than the still unsolved one of the cold models, but there is little doubt,
in view in particular of the extensive Russian work on porous metals and ionic
crystals, that reasonable EOS must include an electronic component along the

above lines already at medium pressures (a few megabars), specially for

porous media.

*See e.g., Kormer et al, ref. 11,

67




- mtmm — ——— e cpn—

If a wide range of porosity and pressure exceeds the present experimental
possibilities, it is necessary to include in any semiempirical determination of
the thermal components of the EOS a minimum of release adiabat points, be-
cause the Hugoniot itself for a solid or a low porosity medium is relatively too
insensitive to, c¢.g., the T' chosen (such data were not available in time to be

included in the theoretical work of this program).

F. CONCLUSIONS AND RECOMMENDATIONS

1. Almost any semiempirical EOS formulation can be used to represent
the Hugoniot data in the experimentally accessible region and such Hugoniot
points can be reasonably well predicted in the absence of phase changes, from

a limited number of parameters determined at the reference stiate.

2. Such low and medium pressure EOS can be extended in a compatible
way to high and very high pressures by introducing various asymptotic models.
But, at the present there is no immediate way of asserting the degree of validity
of the resulting EOS in any given range of the parameters (outside the experi-
mental region) and this prevents one from selecting on sound grounds a particu-
lar EOS as superior to others and of making more than qualitative estimates

(guesses) on their respective validity.

3. Although many so-called "corrections'' have been introduced with an
aim at refining the original semiclassical statistical T-F model, these are
often inconsistent and have not increased the degree of reliability of the re-

sulting modified statistical models.

4, Recent aevelopments in many-body quantum (and classical) statistical
mechanics give hope that significant progress could be achieved now in obtain-
ing, through bona-fide estimates, quantitative reliability and unambiguous pre-
dictions at least for the high density models. Such theoretical work, in con-
junction with a more systematic use of existing, near normal density theories
and experimental work could allow significant progress to be made in resolving

some of the many existing problems in EOS work.

Before any quantitative reliability can be given to proposed EOS of playas,
it is definitively necessary to conduct a considerably more intensive investiga-

tion of the eventual phase transformations of SiO2 and other constituent minerals
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in dynamic compression and upon pressure release. In particular, any elec-
tronic thermal component of the thermodynamic state functions can in no way
be extrapolated across such phase transitions from reference state data on the

basis of present knowledge.

LIST OF SYMBOLS

Gruneisen ratio
Volume
Temperature
Pressure

Internal energy

n oo < M

Entropy

Q

Specific Heat at constant volume
P (V) 0°K isotherm
EC(V) 0°K compressional energy

B Thermal component of energy
p Density
FC(V) Temperature dependent Gr.neisen ratio at 0°K
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5~EFFECTS OF A PHASE TRANSITION ON THE PROPAGATION
OF FINITE AMPLITUDE WAVES

G. E. Duvall and Y. Horie*

A. INTRODUCTION

Many materials have been found to undergo a phase transition on com-

pression,

structure and propagation history of a finite amplitude stress wave.

Under some conditions the transition has important effects on the

One such

effect is to produce an instahility in the compressive shock wave; another is

to introduce the possibility of rarefaction shocks.

In Section B below the theory

of shock wave «tabilily 1s roviewed and extended to a form appropriate for

discussion of cffeets due to phase transitions,

In Sections C and D polymorphic

transitions in which the density increases upon the increase of compression

are classified, their phase bcoundaries are described, and some adiabats and

R-H curves in the coexistence region are calculated. The theory is used to

discuss transitions in iron, bismuth and quartz, all of which have been studied

experimentally.
Notation
P pressurc
\Y specific volume
) temperature in degrees Kelvin
S specific entropv
E specific internal cnergy
G specific Gibbs energy
H specific enthalpy
p mass density = 1/V
I' Gruneisen constant
U shock propagation velocity

u

particle velocity

*Dept. of Physics, Washington State University
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The locus of states in the P-V plane which can be reached by a single

shock from a given initial state is called the Hugoniot or R-H curve for that

initial state.

The jump conditions for a single shock running into material in the state

PO . VO 3 EO’ uO = 0 and compressing it to the state P1 ) Vl’ El’ u1
are
pOUl = pl(Ul - ul) (5-1)
P1 - PO = p0U1u1 (5-2)
E. -E = 2P, + P)V. - V.) (5-3)
1 0 2V 1 0'*" 0 1

A number in parentheses in the text indicates one of the numbered references

at the end of the report.

B. STABILITY OF SHOCK WAVES

(1) Thermodynamic Criteria

The stability of a single shock transition was first discussed by Rayleigh
Ref. (15), who concluded that only compressive shock waves were stable in
gases. This conclusion resulted from an analysis which showed entropy change
to be positive for a compression shock and negative for one of rarefaction. A
negative entropy change violates the second law, so he concluded that only
compression shocks are stable. Bethe Ref. (16) investigated the stability
condition for a more general equation of state and found the entropy condition

to be satisfied if the curvature of the adiabat is everywhere positive, i.e.

(@_g) e (5-4)
oV /S

He concluded that if this condition were violated at any point, that point would

be one of instability for break -up of the compression shock into multiple



waves. He also demonstrated that Condition (5-4) can be violated at a phase

boundary, which then emerges as a point of instability.

Minshall (17) reported the observation of multiple compression shocks in
iron in 1954, and attributed them to plastic yielding and to a polymorphic phase
transition. Drummond (18) showed that violation of Condition (5-4) leads to the

existence of rarefaction shocks and made calculations in iron.

Rice, McQueen and Walsh (19) suggested a stability criterion which differ
from Cond. (5-4). Suppose OAB in Fig. 5-1 is an R-H curve--derived, per-
haps, from experimental data--and we wish to test whether or not a single
compression shock from O to B is stable against breakup into two shocks: one
from O to A and a second from A to B, In order to do this we suppose the
single shock to be unstable, having a compression profile like that shown in
Fig. 5-1(b). Then the velocity of the first shock with respect to the material

following is

1/2

Py = Py
Up =4y = ViV -V (5-5)

PA B

A
0
-
v
(0) (b)
GA-8039-42
ASSUMED R-H CURVE COMPRESSION PROFILE FOR
ASSUMED INSTABILITY AT A
FIG. 5
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The velocity of the second shock with respect to the matcrial ahead of it is

1/2
_v(fB " Fa
2 1 IVA-VB

(5-6)

Then if U2 -uy > U1 - U, the assumption of instability at A is untenable,

since the second shock must overtake the first, in violation of the assumption,
Repetition of this test for every point A leads to the following statement: if,

for every P0< PA< PB ,

D - —
Py PA>PA P,
Va~-Vg V5 - Va

(5-7)

then a single shock from O to B is stable. Cond. (5-7) does not appear to
be particularly useful. It is not particularly appropriate for a priori construc-
tion of a Hugoniot from the cquation of state; and in normal practice it is not
required for testing of experimental data, since the conditions of the experi-
ment reveal multiple shock structures. If double shock data were reduced by
single shock theory, Cond. (5-7) would be useful in principle. In practice a
point of possible instability would be revealed by inspection of the P-V or

US - up data,

(2) Hydrodynamic Criterion

In Reference (20) it is shown that if

d(u + a)/dP e 0 (5-8)

at any point on the path of an accelerating piston, then that point may produce
a shock discontinuity in the flow. Moreover this condition is found to be equiv-

alent to Cond. (5-1) at cach point on the adiabat of the material.
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Except in very simple cases the construction of a Hugoniot requires
numerical computations, This suggests the combined procedure for con-
structing the R-H curve and testing for instability to be described in the next

two sections,

(3) Differential Fquation of the R-H Curve

We assume all required equation of state information to be known and we
scek a procedure whereby the R-H curve can be constructed step-by-step,
starting at the initial pressure and proceeding to higher values, testing at
cach step to determine whether or not a single shock from the initial state to
the next higher pressure will be stable, The procedure for constructing the
R-H curve in this way is available if we have its differential equation and a

suitable test. The differential equation can be obtained as follows:

Suppose the R-H curve is known up to a pressure P. and that a single

1
shock from (P() , VO) to (P1 . Vl) is stable. Then the internal energy at

(P Vl) is given by the R-H equation:

P N . g
E; - Ey = 53(P, = P)(Vy - V) (5-9)

If a single shock to the higher pressure P, + 8P1 is stable, the change in

internal energy will be, to first order in small quantities,
SE, - 0. (V. -V, - 3@, + P sV (5-10)
1 2°1YV°0 1 2V 1 0" "1

A thermodynamic path can be found which connects (P1 + 8P1 R
7
V1 + 8\ 1) and (P1 R

The First and Sccond laws of Thermodynamics are to be satisfied, so that

Vl) . This will require the addition of heat and work.

dE. = T.ds® - P dV

1 1 (5-11)

1 ’
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where any entropy change due to irreversible internal processes is included
in PldV1 . Equating Eqs. (5-10) and (5-11) yields a relation for the rate of
increase of entropy along the R-H curve, relative to that which exists in the

adiabat:

e _ R
d$"/Dv = (Vo = V,)dP/dV)p /2T, + (P, - P)/2T, (5-12)

1

if we suppose pressure to be a function of volume and entropy, we can express
the rate of change of pressure with respect to volume in any direction in terms

of its partial derivatives. In particular, for the R-H curve,

dP> _ <ap> +<ap> <dse>

LY = (2= 5-13)
dv av/ .. e] \adv ®

< R-H adiab, 298 v R-H

Eliminating ds®/dV between Egs. (5-12) and (5-13) yields the differential

equation of the R-H curve:

In obtaining Eq. (5-14), the following identities have been used:

) -

)

-]

38, -5

For a material in which compression is reversible, (BP/aV)ad = (ap/av>s

and S° is the total entropy.

Integration of Eq. (5-14) yields the R-H curve, provided a single shock

is stable everywhere.
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(4) Point Stability Criterion

We wish now to answer the following question: if . single shock is stable
1 7 5P1 ? The

Vl) intersects the R-H curve

at the pressure Pl , Will a single shock be stable to P
0° VO) and (P

only at these two points (6); accordingly

Rayleigh line connecting (P 1°

p
- () S (©-16)
RU, Pl 0 1
I Pl is a point of discontinuity in (dP/dV)R_H , the value on the lower side
of Pl is to be taken, If the point P1 + 8P1 is also to be attained through a

single shock, Cond. (5-16) must hold above P1 ; 1.e,

- (&) 3 P17 %
(]VR-H,PI + 8P Vo - V1

(5-17)

Substitution of Eq. (5-14) into this inequality yields the condition for stability:

a2 I'tVg - Vl).
(v, - ul)' ] A 31 (5-18)
1 -%l(vo Yy [p =P + 8P
If
F(Vp - y2vy <1, (5-19)

then Cond. (5-18) reduces to a simpler one: l’1 : \/1 is a stable point if

2
a

v/
[

lim —, (5-20)
SP0|(Uy- u,”

77




L

B . ey

N - B e S

Since Cond. (5-19) is normally satisfied, Cond. (5-20) is a useful cne which
corresponds to the hydrodynamic Condition that the flow be subsonic behind the
shock. *

A situation in which Pl is a state of instability is illustrated in Fig, 5-2.

C. THERMODYNAMIC FUNCTIONS IN THE COEXISTENCE REGION

We are concerned here with instabilities which may arise when the
Hugoniot curve intersects a phase boundary and the compressed material is
forced into the coexistence region or on into a second phase. Bethe (16) has

shown that such a point may be a point of shock instability.

We restrict consideration to materials which transform isothermally to a
higher density form when pressure is applied. Transitions will be classified
according to the sign of dP/dT in the coexistence or mixed phase region and

the sign of dS/dT on the phase boundary; procedures for constructing

P
% TANGENT To -7 "~

ADIABAT ABOVE P\

TANGENT TO ADIABAT
BELOW P,
TANGENT TO

R-H CURVE ATPR \

\

RAYLEIGH LINE

R-H CURVE

GA-30%9-43

FIG. 5-2 COMPARISON OF SLOPES AT A POINT OF INSTABILITY

*When Cond. (5-19) is satisfied, Cond. (5-18) implies Cond. (5-20) and vice-
versa. When Cond. (5-19) is violated, a more detailed investigation based
on hydrodynamics will be required to establish the proper criteria for stability.
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adiabats and R-H curves in the mixed-phase region are described, some

general properties are derived, and some examples are treated.

Although interest here is centered primarily in polymorphic transitions of
solids, there is no difference thermodynamically between these and the trans-
formations of melting and vaporization; all are governed by the Clausius -
Clapeyron equation in the coexistence region. This will henceforth be
designated "C-region' or "C-R", and thermodynamic quantities in the C-region
will be denoted by a subscript "M", It is also assumed that isothermal changes

satisty the Gibbs condition at constant P and T .

In Section 5-1, a classification of transitions is made according to the
sign of dP/dT and dSl/dT » where the subscript ''1'" denotes changes along
the boundary between the less dense phase, denoted as phase one or 1, and
the C-region; and relations between the phase boundary, the adiabat in @1
and the isotherm in @1 are derived. In Section 5-2 the slopes of adiabat and
Hugoniot in the C-region are derived and some relations at the boundary are
established, The slopes of adiabats and R-H curves are compared and the

curvaturce of the adiabat is discussed,

For simplicity we assume the region of interest to be far from a triple-

point,

(1) Phase Boundaries

The basis for conventional thermodynamic treatment of phase transitions
is the assumption that extensive thermodynamic properties are mass-weighted
averages of properties of the two components, i.e., phases. Examples of
such are entropy, specific volume, and Gibbs free energy, all of which
depend on amount of material, and so vary throughout the C-region. Pressurc
and temperature can be simultaneously constant during a phase change because
they are intensive variables; their values do not depend on the amount of ma-

terial present.

The mass-weighted relation for extensive variabies comes directly from
the condition that P and T are constant in the C-region and that surface
encrgies can be neglected. Since dP = dT = 0, then dG = 0 = gldM1 o
gzdl\l2 , Where (IM1 is the fraction of unit mass which goes into phase 1 and
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dM2 is the fraction which goes into phase 2 in the contemplated change. But

-dM1 = sz = dX, so B, = By - Here X denotes the fraction of mass
that has transformed from phase 1 to phase 2 (Fig. 5-3): X = (V - Vl)/
(V2 - Vl) :

With this definition of X , the specific volume at point Q of Fig. 5-3 is

Vo= XV, 4+ (1 - X)V,

=V1+XAV,02x21

where V1 is specific volume at point B of Fig, 5-3, V,_ is its value at

point E, and ’
AV = v, - V1 <0 (5-22)
Then for constant T we have
dvV = AVdX ;dT = 0 (5-23)

PHASE 2 PHASE |

Sl
v

GA-3080-44

FIG. 53 DEFINITION OF THE TRANSITION
PARAMETER ¥

80



Other extensive variables suchas H, S, E, are given by similar

expressions:

H = H1+XA H (5-24)
s=sl+xA S (5-25)
E=E~XAE . (>-26)

Temperature on the phuse boundary ABC of Fig. (5-3) will be found from the

Clausius-Clapcyron equation:
dP/dT = AH/TAV = AS/AV (5-27)

T= T = ](AV/AS)dP = f(d’l‘/dP)dP (5-28)

Phase changes are commonly studied under static or quasi-static condi-
tions in which cither P or T is held nominally constant and the other quantity
is slowly varied through the phase transition, The results of such studies are
complete when a curve P(T) representing the phase transition is obtained,
along with AV(T) . Dynamic processes are usually other than isothermal,
and this fact leads to the necessity for investigating the geometry of phase
boundaries, coexistence regions, adiabats and R-H curves in the S-T and
P-V plancs il the relations between phase transitions and wave propagation

are to he understood,

We first consider phase bourdaries in the S-T plane and restrict dis-

cussion explicitly to those materials for which

AV <0 (5-29)
(aV/aT)p > 0 (5-30) =
1
—
81
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Here the subscript "P.'" denotes a coetficient at constant pressure in Q1

evaluated at the boundat'y between Q1 and the C-region. A derivative written
with a block ''d"", having subscript ''1'" on the variable in the numerator,
denotes a derivative along the phase boundary between @1 and C-R. Sub-
scripts "2'" have analogous meanings for 2 and its boundary with the C-

region,

The rate of change of entropy along the phase boundary can be expressed

as

9, _ [es + (28 dP (5-31)
dT oT |, 8P ), dT
1 1
C
P
dpP
= Tl '(3\1{ aT (5-32)
£

The transformation from Eq. (5-31) to (5-32) is made using a Maxwell rela-

tion and the definition of specific heat at constant pressure. We assume that

cPl > 0; (5-33)

then, with Cond. (5-30) we see that, if dP/dT < 0, then dSl/dT >0. We
label this a transition of Type 1. If dP/dT > 0, then dSl/dT may be

either positive or negative, depending on the magnitude of dP/dT . We label
these transitions Type 2 and Type 3, respectively. These classifications and

their properties are summarized in Table 5-I.



—— . gy

Table 5-I
CLASSIFICATION OF POLYMORPHIC TRANSITIONS
AV <0, (aV/aT)Pl >0,Cpy >0

TYPE OF

TRANSITION dP/dT As dS,/dT
1 <0 >0 >0
2 >0 <0 >0
3 >1() <0 <0

The slope of the second phase boundary comes from the identity

ds.  ds
2 95, 4
aT = ar * ar @D .

if AH/T increases with T, then dSz/dT > dSl/dT and vice-versa. It is
unfortunate that knowledge of most phase transitions does not include the sign

and magnitude of this derivative. It will be neglected in most of what follows.

From Table 5-1 it is possible to construct schematic representations of
the geometry of the phase boundaries in the S-T plane. These are shown in
Fig. 5-4. For Type 1, Fig. 5-4(a) @2 lies above and to the left of @1 since
AS > 0; consequently temperature decreases along an adiabat AC traversed
from @1 to 2. Type 2, shown in Fig. 5-4(b) has the relative locations of
®1 and O2 interchanged, AS <0 and T increases from @1 to @2 along
an adiabat. Type 3, Fig. 5-4(c) has phase boundaries of negative slope, 9?1
is above and to the right of 2, and T decreases from @1 to @2 along an

adiabat.

Bridgman (21) has noted that dP/dT for polymorphic transitions is
commonly the order of 5u pars per degree Centigrade; i.e. transistions of
Types 2 and 3 are more common than those of Type 1. Slater (22) points out
that this is to be expected since increases in entropy are normally associated
with increases in volume. He goes farther to show that, if AS/AV is

identified with ('c)S/%)V)T for a single phase, we have

(8S/dV)p = l‘cv/V (5-34)
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(a)

(b)

(c)

PHASE 2

:REG!ON

A PHASE |

PHASE |

PHASE 2

F—
T
c- B
REGION PHASE |
PHASE 2
BI
‘>
.

GA-5059-45

FIG. 5-4 RELATIVE FOSITIONS OF PHASE

BOUNDARIES IN S-T PLANE; \V < 0

(@) Type 1: dP dT < 0, \S > 0dSdT - O
(b) Type2: dP dT * 0, \S + 0dSdT > O
(c) Type3: dP dT - 0, \S - 0dSdT =~ O
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where I' is the Griineisen constant and CV is specific heat at constant volume.

For Cy, = 3R per mol, I'= 2 and V = 10 cc/mol ,

AS/AV = (88/8V)p = 50 bars,/°C (5-35)

Using Eq. (5-34) in Eq. (6-32) and equating C. to CV » We arrive at the

P
expression

ds C

1~ P I'T [av

aT T [1 T (a'r)p]' (5-36)
Taking D= 2 and (1/V)(8V/3T), < 3 x 1072 | we conclude that

ds /aT > (Cp/T)ll - 0.6 x 10'3T] (5-37)

for most solids. Thus, except for very high temperature transitions, we will
normally expect Type 2 to prevail. In fact no transition of Type 3 is known to

the authors,

Incidentally, the above classification suggests a fourth Type in which
dS/dT is negative with @2 above Q1 ; this corresponds to AV > 0, which

is a case of no interest at present,

A procedure for determining the relative dispositions of the pure phase
regions and their boundaries in the P-V plane is suggested by a calculation
in Reference (16). Cousidering specific volume to be a function of P and T,

oV oV oV oT
av) _ (8V) | (8V) (of (5-38)
< ap>81 <ap >T1 <"’T>P 1<ap>81

we nave
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Wy =<6V> +<ﬂ> dar o
dpP apP T1 aT pldP

For (8'1‘/8P)S1 ’

@), o) e e
P R C_\3T
S1 (ﬁ)m p1\°T /p1

The inequality follows from Conds. (5-30) and (5-33) and implies that

(8V/ aP)S1 > (E)V/E)P)Tl (5-41)

Conversely, this inequality implies that of Eq. (5-40). Egs. (5-38), (5-39)
and (5-40) then imply the following relations among dVl/dP ; (aV/aP)Sl ,
and (8V/¢')P)T1 for the three types of phase transitions described in Table 5-I;

v
db < ——l<<ﬂ> <(ﬂ) : (5-42)
T1

ap o By Cer fav) e
dT ' dT T anldT

o.o dT/dP > (8T/E)P)81 and (5-43)

b ><ﬂ N <ﬂ>
dP apP S1 P T1
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Type 3

ds C
a o, %, Sma <_a\_f> _dp

'y p
dT dT T oT PldT
[ ]
e o %< (—g%) and (5-44)
) S1

/
<_8_V> >ﬂ1>(ﬂ>
oP s1 dP apP Ti

These relations are described in Fig., 5-5. For Type 2, dVl/dP may be
positive; for the others it must be negative if (BV/GP)S and (6V/8P)T are

both negative.

The slope of the second phase boundary is obtained from the definition
v, - V1 = AV = f(P)< 0, Then

dV,/dP = dV /dP + d(AV)/dP

a1

dp2 dP 1/dV
- 5-45)
av ap (
L+ 2P aaw)
av__ap

if d(AV)/dP > 0 and (dP,/dV) Id(AV)/dPI >- 1, then dP,/dV < 0 and
|(lP2/dV| > |dP1/dVI . This follows from the previous result that

dP /dV < 0 when dP/dT < 0. However, if (dP;/dV) Id(AV)/dPl <- 1,
then the denominator of Eq. (5-45) is negative and dP2/dV > 0. This be-
havior would be expected near a critical point where AV—>0 as P-—)PC 5

For purposes of illustration we consider a region where sz/dV =
dp 1/ dV . Then, for example, for Type 1 there may be a situation like that
shown in Fig. 5-6. Here part of the region contained between the two phase

boundaries is triplymapped: first by the isotherm GB of phase 1, then by
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- 0

—1— (3V/8P),,
TYPE |

-+ (8Vv/aP),,

—+ dv,/dP

—+ o

—1 dv,/dP

-+ (aV/ 3P,
TYPE 2 1 (av/aP),,

—+ o

—+ (3V/aP),

- dv,/aP
TYPE 3 — (8V/8P),

P A PHASE

\ . TANGENT TO
\ | ADIABAT OF ¢,

BOUNDARY

TANGENT
TO ISCTHERM
OF ¢,
g
Y
PA POUSSIBLE PHASE
ADIABAT OF BOUNDARY
PHASE |
N N
\
ISOTHERM OF\\
PHASE | N
™
e
\ N
N
—i-
Y
P A PHASE
BOUNDARY ADIABAT OF PHASE |
\
<N\
~ N\
ISOTHERM OF ™~
PHASE |

GA-5039-.46

FIG. 5-5 RELATIVE SCOPES OF ISOTHERM, PHASE BOUNDARY
AND ADIABAT IN P-V PLANE
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the isotherms BE of the P
mixed phase, and lastly by the *
isotherms EH of Phase 2,
EH must lie above DEF if
(E)V/{')T)p2 >0 and sz >0
by virtue of the equation
corresponding to Eq. (5-39)
for the second phase boun-

dary when dP/dT < 0,

Any apparent anomaly in GA-3089.4°

such a multiple mapping of the
FIG. 56 TRIPLY-MAPPED REGION IN THE

P-V plane is immediately P-V PLANE FOR TYPE |
resolved by recalling that

behavior in the F-V plane simply reflects a projection of relations on the
P-V-T surface. Fig. 5-7 represents a P-V-T surface for a material with
a phase change of Type 1. AB is the phase line in the P-T plane,

dP/dT < 0 ; it is the projection of the cylindrical surface of the coexistence
region, DFB'B", onto the P-T plane, B''D' is the projection of B''D onto the

P-V plane, etc.

The three types are summarized graphically in the P-V and S-T planes
in Fig. 5-8.
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GA 30%9 49

FIG. 5-7 EQUATION OF STATE SURFACE IN P-V-T SPACE
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GA-0000-490

FIG. 58 PHASE BOUNDARIES IN S-T AND P-V PLANES
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(2) Adiabats and R-H Curve P+ 43 C-REGION

(2. 1) Adiabat. We first obtain an c

expression for the adiabat traversing the

E' —

coexistence region in the P-V plane. Re-

ferring to Fig. 5-9, we wish to calculate the

=
volume at point C, pressure P, which has v
the same entropy as point A on the phase 7A-5089-30
boundary. In order to do this we compute FIG. 59 ADIABAT IN THE

the entropy at C by integrating along ABC COEXISTENCE REGION

and setting SC - SA = 0. The resulting

equation can be differentiated and solved for the adiabatic slope at C ; i.e.

B

S. -8, =0 f (dS,/dP)dP + XAS (5-16)
A

where AS = 82 - Sl evaluated at P = PB . Henceforth the quantities at
B and B' are denoted by subscripts "i'' and "'2"; quantities at the boundary

point A will be denoted by subscript A",

From Eq. (5-21)

X = X(P) = (V- V)/(V, - V) (5-47)
Combining Eqs. (5-16) and (5-47):
B
[ (dS,/dP)dP + AS/AV)(V - V) = 0 (5-48)
A
Differentiate this to obtain
.d_s_1+AS[(3—V\ = +V-V)d—<é—s-)=0 549
a " AV P/, " dP ( 1 ap\AV ‘ o=
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Here, as before, total derivatives refer to variations along the phase boundary
adjacent to phase 1. All quantities are functions of the pressure P, and the
subscript SM imeans entropy is constant and the quantity is evaluated in the
mixed phase region. Recall that AS/AV = dP/dT and solve for the adiabatic

derivative:

oV dp

(W)SM - @@V - Vgs (ngr)- (B oed)

This is the required adiabatic slope. The derivatives dVl/dP and dSl/dP
are given by Eqs. (5-39) and (5-51) following:

ds
T - (%)m * (%§)P13—§ (6-51)
B _(_ay) ol B (5-52)
aT P1 T dpP°

Substitution of Eqs. (5-39) and (5-52) into Eq. (5-50) yields

C 2
() () o) SR vh )

(5-53)

Eq. (5-53) applies to an arbitrary point in the coexistence region. At the
boundary of phase 1, V = V 1 and it is seen that a discontinuity in the
adiabatic slope exists, as shown by Bethe (16); i. e, at the phase boundary

C 2
By -, 3@ e
93
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- (&) 1+(a_V.) (BI) -2y . i(ﬁl)z ;

T3 :
oT /' \0P/gy  \8P/p,  Cp 9T/p,

&)
(5-55)

where the subscript SM1 refers to the mixed phase side at the phase boundary.

Subtracting the first of these from the second yields

2 C 2
&), @) - -3 B

— S 2
T vy /SP1 d_T] =0
[ Cpl (aT)Pl T dP

Consequently there is always a di icontinuity in the adiabatic slope at the phase
boundw.ry, except when (aT/aP)S1 = dT/dP ; and the slope of the adiabat in

the pure phase is always steeper than that in the mixed phase, i.e.

Iap/avlSl > lap/avl ) (5-57)

The relation of (?)V/BP)SMl to other slopes at the phase boundary can be

determined for the three Types of transition as follows:

Type 1

According to Egs. (5-39) and (5-54),

dv C X 2
B, G, 5B <o e
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Type 2

Eq. (5-54) can be written

<8_V> <ﬂ> .. <91> - [zi’il i C_Pl.] b
oP SM1 aP T1 dP dT T

By the argument leading to Eq. (5-37), we may expect that the right hand side
of Eq. (5-59) is normally negative, though it may have either sign.

Type 3

av
ﬂ) —1 59 (5-60
= ] -60)

<ap sy | 9P

The relations between various slopes at the phase boundary are displayed in
Fig. 5-10.

The curvature of the adiabat can be obtained by differentiating Eq. (5-50)
directly:

v)  _ | Bien vy
2) T ap[ap ~dpap| - |\ep) , ~T@P|
SM
(5-60.1)
2
d dp a4 dP
* QP 6“ dT> -V -V Pl <lnd'1> .

this reduces to

dav
@), #4689
SM1

(5-60. 2)

At the phase boundary where V = V1 5

iv) . (WY1 %iar|
dP | dP dP dP
SM1

ap>

\
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FIG. 5-10 RELATIVE SLOPES AT THE PHASE BOUNDARY
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(2.2) R-H Curve. The R-H curve and adiabat in a normal material
of single phase have a second-order contact at the origin of the Hugoniot (9);
the entropy difference between Hugoniot and adiabat is then third order in the
compression, If the intersection of phase boundary and Hugoniot is a point of
instability for a single shock with final amplitude in the C-region or phasc 2,
then this intersection, A in Fig. 5-11, may be expected to serve as initial
state for a second shock following the first (,52 in Fig. 5-11). Accordingly the
relation between that portion of the Hugoniot originating at point A and the
adiabat in the C-region originating at A may be expected to be the same as
that existing between adiabat and Hugoniot in a single phase. A careful review
of the premises on which the single-phase result is based reveals no reason
for doubting that it holds for the C-region, and a direct calculation, based on

the following analysis, verifies it.

In order to determine the locus of the R-H curve in the C-region, consider
the situation depicted in Fig. 5-12. Point B represents the final state of a
second shock originating at point A on the phase boundary. The enthalpies at
A and B are connected by the R-H equation; they can also be calculated by an

integration along the path ADB. Equating the two yields the equation of the

>
v

GA-5039-32 GA-5089-8)

FIG. 5-11 SECOND SHOCK ORIGINATING FIG. 512 CALCULATION OF

AT A PHASE BOUNDARY HUGONIOT IN
C-REGION 5
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R-H curve in the C-region:

P
1
Hg - Hy == (P - P,)(V +V,) =/ (dH /dP)dP + XAH . (5-61)
PA

where Hl(P) is enthalpy on the phase boundary and

LR dP
XAH = ml AH = T(V - VI)TI,. (5-62)

The right hand side of Eq. (5-62) is a function of P alone. Substituting
Eq. (5-62) into Eq. (5-61) and differentiating with respect to P yields an

equation for the slope of the Hugoniot in the C-region.

dv P 1 _ap T
<dP> [ at " 2® - PA)} = TaT P ~ap
RH
(5-63)
d [dP 1
- T(V - Vl)‘(ﬁ)<d—'f> + 2 (VA -V) + Vl .
Divide Eq. (5-63) by T dP/dT and substitute into it the identity
dHl/dP = V1 + T dSl/dP (5-64)
to obtain
<d_V> _LdT )<d_V> M Biar
dP .. ~ 2T dP a\dp/p, = "dP T dP dP
(5-65)

V. -V
d /[ ap A~ Vuar
-V -V ﬁ)é“ dT>
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The slope at the phase boundary, (dV/dP)RHl , is given by Eq. (5-54) or by

setting V =V 1" Vv A in Eq. (5-65); the curvature at the phase boundary is
given by Eq. (56-60.2).

(2.3) Relative Slopes of Adiabats and R-H Curve. For material in
a single phase, the slope of the Hugoniot and the slope of an adiabat crossing

the Hugoniot are rclated by Eq. (5-14), which can be cast in the following form:

2 2 2
¢ -a _ T U-U
A = SV, - V) [1 -0 ] , (5-66)
C C
Here
e = _vP (P /dV)p
A -vz(ap/aws

T = (V/Cy)@P/aT),, .

A relation identical in form can be derived for the C-region. Eq. (5-65) can

be written:

1

dT
/4P _[ap 1-37ap® - Py
v = \av V. -V ' (5-67)
RHM sv ,,Va " Varfa
2T aP(av ),

where (P A \Y A) represents the intersection of the @1 phase boundary and
the Hugoniot.
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Define 02 and a2 as in Eq. (5-66), then Eq. (5-67) becomes

=
P - PA
2 2 r vV, -V
¢ -a M A
2 =2v VA -V - (dp) ] (5-68)
C - \3v
4V RHM
where
. =_v_d£=_£(§£) aT. . ﬂ)
M CVM dT T\aVv SMdP VM oT VM
(6-69)
(.ag) . (il_) _ b
oT VM aT SM dT
The specific heat in the C-region can also be expressed in the form:
ds 2 dVv 2
) a’p . NVifap
Cym = Tar * TV V)5 - Tgp <dT> : (5-70)

This is obtained by differentiating Eq. (5-46).

In order to determine the sign of 02-a2 in Eq. (5-68), note that the sign
of the bracket is positive if the slope of the R-H curve at P is greater than
that of iire Rayleigh line from PA . This is certainly true if (dZP/‘dvz)RHM >0,
this condition is unnecessarily restrictive, but we shall use it for simplicity.
Similarly if (d2P/dV2)RHM < 0 everywhere between PA and P, the
bracket is negative. In order to determine the sign of -(a\'/aP)SM , refer

to Eq. (5-50); it can be written

avV av d dP
X = (== -(V - V)= én— z (5-71)
(al})SM (BP) SM1 1'dp dT>
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Here (3V/ aP)SM 1 is evaluated at VI(P) ; it is not the slope of the adiabat of
Eq. (5-71) where it intersects the phase boundary. Then if (aV/aP)Sl <0

at all points of the phase boundary, so is (aV/aP)SM 1 according to Fig. 5-10.
Then if the second term on the right-hand side of Eq. (5-71) does not override
the first, (aV/E)P)SM < 0; VA - V is positive, so that

2
sgn (c2-a®) = sgn (dT/dP) sgn (dZP/dVZ)RHM. (5-72)
where
sgnx =+ 1if x >0
sgnx = - 1if x <0.

2 2
For (d P/dV )RHM >0:

Type 1,

¢ -a <90

Types 2 and 3,

c2-a2>0

The relation between c¢ e and a2 is normal for Types 2 and 3, i.e. the same
as for a single phase with (82P/8V2)S >0. Type 1l is abnormal, but
corresponds to the inversion of the order of adiabats in the C-Region. This

is illustrated in Fig. 5-13. A single shock from point A into the C-region is
stable. Type 2 exhibits the same structure as a normal single phase material.
Type 3 is interesting because the phase boundary splits the isotherms and
adiabats (Cf. Fig. 5-10). However, the geometric structurc is not violated

by the assumption of positive curvature and Cond. (5-72). This is illustrated
in Fig. 5-14.
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~< 55, PHASE BOUNDARY

GA-30%9-%54

FIG. 5-13 ANOMALOUS R-H CURVE FOR TYPE 1 TRANSITION

l) .
The assumption that (dZP/dvz)RHM < 0 reverses the sign of ¢~ - a2

in Cond. (5-72); this leads to instability in the shock for all Types.

This calculation can be verified in the neighborhood of the boundary by

expanding V(S, P) in a series about the boundary point A:

2 p-p,)° 3.\ (p-p, )5
oo -ng ) )

(5-73)

+(¥)p(s-sA)+... = Vyq * (g)p(s-sA)+
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FIG. 5-14 ADIABATS AND HUGONIOT FOR TYPE 3
TRANSITION

S -8 A can be expanded in powers of (P - P A) along the Hugoniot in the
manner described by Courant - Friedrichs (23) with the result:

2
1 d%y 3
S-S5, "1ar, 2 ®-Py +... . (5-74)

A dP

Entropy increases along this segment of the Hugoniot as P increases, for
a®v/art > 0.

From Maxwell's relations,

(8V/aS)P = (aT/aP)S = dT/dP (5-15)
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in the C-region. Consequently Eq. (5-73) becomes

2
_ 1 [drd*v \3 4
VeRu - Vad T T <dP > (P -Py) +0 P - Pyl 6-16)
A \dP 4p2 o

Differentiating Eq. (5-76) yields

dv aVv 1 [dT d°V 2
- - == = P-P S (5-77)
(dP) ( oP )SM 4TA <dP dP2>A< A)
For (d%V/dP%), > 0, the right hand side of Eq. (5-77) has the sign of
dT/dP . This is in accord with Coud. (5-72) since (dV/dP)RHM -
av/aP)SM has the same sign as celoaX,

(2. 4) Curvature of Adiabats, The curvature of the adiabat in the
C-region depends upon second order thermodynamic coefficients, and it is,
accordingly, difficult to make any general statements about its sign. Eq. (5-56)

can be written

av) (@) _ I <"ﬂ>2; (5-78)
(ap)SMl oP S1 CPl dp

so we can say that if (aV/E)P)Sl mcreases with increasing pressure along the
phase boundary, and if T(dS, /dP) /CPl
(é)V/&P)s1 , then (aV/aP)SM1 increases with P so (9 V/aP )smp >0 -

Eq. (56-60. 1) provides an explicit statement of the curvature. It is of little

does not. mcrease more rapidly than

help, however, for the same reason that affects Eq. (5-78): dzsl/dP2 is not

normally known. An expression for the curvature in terms of more directly
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-
observable quantities can be written as follows: |
2 dz'\r’ 2 2 2
vy _ %% (&%v) far\*, [a%v )\ dr
apz sz HTE dP aTaP 1 dP
SM Pl
2 2 P
o (2v) &1 _(ar _d_<_m_>
3T /b1 gp dp/ dP\ T
(5-79)
C 2
P S L <.ax> q <lnﬁ£'>
T dP dP2 oP SMdP dT .

av 2
_14d dpP d dP
*74 ap (“‘ dT> -V -V 2 (‘“ dT> '

This equation, too, contains too many undetermined coefficients, although
they are in principle known, Bethe (16) has examined the separate terms of
Eq. (5-79) for some known phase transitions, and he speculates that the
curvature is always positive. However, no such firm conclusion is justified

without more exhaustive study.

D, EXAMPLES

Some data pertaining to phase transitions in bismuth (BiF*Bill), iron
(a—h.c.p.) and quartz (a - stishovite) are given in Table 5-II. Subscript
"A'" refers to the intersection of the phase boundary aad the Hugoniot with
origin at room temperature and atmospheric pressure. Values of specific
heat and thermal expansion coefficient are taken at atmospheric pressure.
Values of dVl/dP are determined from Eq. (5-39); values of (dP/dT)calc
are obtained from measured values of the R-H curve above the phase boundary
in the manner described by Duff and Minshall. & The procedure is to extrapo-
late the R-!i data to the phase boundary and from this determine (3V/8P)SM1 = M
(dV/dP)RHl . Substitution of this into Eq. (5-54) along with the other thermo-
dynamic data makes it possible to calculate (dP/dT) = (dP/dT)c alc * A
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useful form of Eq. (5-54) is that given by Duff and Minshall:

2 2c0 C
(%’%) 3 1-3 g? T TV Pl‘-ﬁ) =0 (5-80)
RH1 ~ P1 Bru1 - A
where the following abbreviations have been used:
- _ 1dv
BRHI o7 Vl(dP>RH1
B. = _1 (V] (5-81)
Y
_ 1 (v
. V1 (aT)Pl

By substituting directly measured values of dP/dT into 1,. (7-54) it is
possible to calculate BADMl = (l/V)(aV/aP)SM1 . IfBRHl represeints

equilibrium, then it should be true that BRHI The failure of

= Bapm1 -
this inequality to hold reflects the difference between dP/dT and (dp/dT)calc'
These differences may result from nonequilibrium effects in shock compression,
from errors in extrapolation of the shock data back to the phase boundary, or
from nonhydrostatic stress distribution in shocked material. Construction of
the equilibrium R-H curve in the C-region can be accomplished by s'bstituting
the appropriate thermodynamic coefficients into Eq. (5-61); an alternative

procedure is to examine Eq. (5-65) for deviations from constant slope.
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TABLE 5-I1
PHYSICAL DATA ON PHASE TRANSITIONS

Bismuth Iron Qtz-Stishovite

Vs cc/g - 1020 T128 3775
Cpy? kb cc/g°C 1.21x 1075 (10) | 4.15 x 1073 9,2 x 1073
a, °C 40.2 x 108 (100 | 36.3 x 1078 38.4 x 10°°
B, kb! 2.46 x 107 (10) | 0.51 x 1073 (11) 0.76 x 107
P, kb 25, 3% 132 (11) 144 (14)
V, co/g . 0929 (13) .1197 (11) .3145 (14)
T, °K 315 (10) 310 (11) 476 (14)
dP/dT, kb/°C -.0500, -.0508 | -.075 (12) +,0177 (15)
AV, cc/g - 0047 -, 0041 (11)
(-1/V) dV /dP 2.86 x 107 .99 x 1073 1.5 x 1073
Bryy Kb 13 x 107 2,18 x 1075 | 1.59 x 107
Bipuy b 21 x 10°° 23 x 1073 194 x 107

-, 067 -.29 +.225

(dP/dT)c alc’ kb/°C

*Adjusted to static value.

Numbers in parentheses indicate references at end of paper.

If no reference is indicated, nunibers are from Smithsonian tables or

calculated here.

a, = isobaric volume expansion coefficient.
B 1 = isothermal compressibility of pure phase.
BADM 1 = adiabatic compressibility of mixed phase.
BRHI = (-1/V)(dV/dP)RHl
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(1) Bismuth

Measurements reported by Duff and Minshall24 were assumed to represent
the BiI-Bill transition and were of two kinds. They varied initial temperature
of the bismuth specimen and measured the pressure amplitude of the first
wave. From their data they inferred a value of -0, 0508 kbar/°C for the
dP/dT. This compares very favorably with Bridgman's value of -0.0500. The
amplitude of the first wave was about 3.5 kbar greater than the pressure re-
ported by Bridgman for the same temperature. This difference might be due to
a rate effect in the transition or to nonhydrostatic stress or to both. A limited
attempt revealed no decay of the transition pressure with travel distance,

which would indicate the absence of any but slow rate effects.

Second, they measured the amplitude of the second shock for different

shots with the same initial temperature and extrapolated the results to obtain

BRHI ’

by Duff and Minshall.

given in Table 5-II. Extrapolation errors are estimated at 60 percent

With the data of Table 5-II the change of (dV/dP)RH within the C-region
can be estimated. From the given value of BADMI we find at the boundary

of phase 1:
@Y) = - 195 x 107 ce/gkb
RH1
Assume that CPl = Cv1 , dP/dT = const., dVl/dP = const. and that
a ., Bl , CPl are constant. Since dP/dT = const.,
(T -T,) =-20(P -P,).

Integration of Eq. (5-65) with the above assumptions yields the solid curve of
Fig. 5-15. The difference between this and the measured R-H curve is notable
because of its magnitude and because the curvature of the computed curve is
negative. The latter result may well be due to neglect of variati.as of thermo-
dynamic coefficients. The former is so large that one is almost forced to con-

clude that kinetic effects are entering into the shock compression, particularly
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FIG. 5-15 COEXISTENCE REGION FOR Bil-Bill

when it is recalled that the pressure of the phase boundary measured in shock

compression exceeds that reported by Bridgman.

A comparison of static and dynamic data near the transition pressure is

shown on an expanded scale in Fig. 5-16.

(2) Iron

Minshall described a double shock structure inironin1954 (17) and suggested
it might be due to a phase transition at 130 kb. These and other measurements
were later reported in detail by Bancroft and others (25) and analyzed in more de-
tail. Johnson, Stein, and Davis reported an extensive setof measurements in 1961
(26) in which initial temperature was varied from liquid nitrogen to nearly the
« - ¥ temperature. They suggested onthis basisthat the 130-kb transition was a
transition to a new phase, andthis has since been verified by x-ray diffraction
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FIG. 5-16 PHASE DIAGRAM FOR BISMUTH

measurements at static high pressure and the new phase is found to be h. c. p.
From their data, dP/dT = -0.075 kb/°C. Substitution of this value into
Eq. (5-80) gives [,y Shown in Table 5-II.

Minshall's data include measurements of the second shock amplitude.
These can be extrapolated to obtain BRHI as reported in Table 5-11, This
is only 10 percent of BADMI ; the difference is much greater than was
found for Bi. The value of (dp/dT)calc derived from BRHI differs
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correspondingly from the directly measured value. Remarkably enough it is
the same as dP/dT for the a - y transition as determined by Claussen and

others (26). The phase diagram for iron is shown in Fig. 5-17.

It is difficult to attribute such differences to rate effects in shock, since
the first-wave amplitudes agree very well with the static values. Moreover
there is little evidence for decay of the 130-kb wave, which further indicates
the absence of rate effects, The resolution of this puzzle must await additional

measurements - preferably near the transition point.
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(3) Quartz

The two known high uensity forms of quartz are coesite and stishovite.
The former is produced at relatively low pressures but is a slow transition
and is believed to be produced to only a limited extent by shock compression
(28). Stishovite is believed to be produced in shock (28,29) under the condi-
tions shown in Table II; this is believed not to be an equilibrium point (30).
Nonetheless the Wackerle compression data have been used in Eq. (5-54) to
determine (dp/dT)calc . The result, shown in the last row and column of
Table 5-II is about twelve times greater than the static value quoted by Ahrens
(29). This can be regarded as confirmation of the nonequilibrium character of
the transition. The work by Ahrens and Gregson suggésts that shock recovery
experiments can be used to study the kinetics of the transition, but this re-

mains to be done.

E. DISCUSSION

The ordering of slopes in the P-V plane for transitions of Types 1 and 2
appears to be a useful minor tool in the evaluation of shock data. Transitions
of Type 3, though curious, are of no importance. Of greater importance is
the relation between adiabatic slope in the mixed phase region and dP/dT ;
this allows cross-comparisons to be made between different kinds of measure-
ments. The discrepancies found between direct and inferred values of dP/dT
are so large that needs for better thermodynamic data at high pressures and
for more critical study of shock data and their interpretation are evidently

pressing; this clearly points the way for further productive research.

The discrepancies in the iron data are particularly disturbing. The
magnitude of the transition pressure agrees reasonably well with the static
value. The static transition is reported to be sluggish (31); but, on the basis
of experience with stress relaxation effects (32) one would predict that in-
complete transition in shock would lead to a first wave amplitude above the
static transition pressure and to a decay of the first wave amplitude with time.
We might assume that the shock data are equilibrium values and that the
specific heat and thermal expansion coefficients are in error by a large

amount. Still another possibility is that the Hugoniot points are at equilibrium
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and beyond the mixed phase region. The discontinuity at the second phase

boundary would then lead to differences in the observed direction between

BRHl and 'BADMl'

ported by Johnson et al. is seriously in error. It was obtained by a clever but

Finally it is not inconceivable that the phase line re-

unusual technique which is not thoroughly understoc 1; verification by more
conventional measurements would not be out of order. Minshall made a
limited effort to determine dP/dT with pin techniques, but not all of his data
have been made available and his conclusions and their certainty are not
known to the authors. Static measurements would be importani if the pressure

of transition can be accurately determined.
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6- FLOW CALCULATIONS
J. O. Erkman and G. R, Fowles

A. INTRODUCTION

The work on this phase of the program is intended to serve as a guide for
assessing the sensitivity of predictions of shock propagation from underground
explosions to uncertainties in the constitutive relation (equation of state) of the
medium. In a nrevious report on this program1 comparisons were shown of the
pressure and particle velocity profiles predicted assuming various models for
the equation of state, For these calculations spherical symmetry was assumed
and the energy source was taken to be an adiabatically expanding gas of pre-
scribed mass and energy. Variations of the zero-degree isotherm (computed
for quartz and its high-pressure polymorph, stishovite), Griineisen's ratio and
the initial porosity were examined. Perhaps surprisingly, the differences in
the shock profiles showed no drastic effects of these fairly pronounced varia-
tions in the equation of state. The largest differences observed in the peak
pressure at a given radius, due to combinations of parameter variations,
amounted to factors of 2 to 3. Evidently, some variations in the equation of
state tend to be self-compensating in their effects on shock propagation. Thus,
in the case of variable porosity the energy dissipation is known to be highly de-
pendent on porosity, for smaller values of porosity, and one might expect faster
decay of peak pressure in more porous material, However, the high energy
loss per unit mass in distended material compared with that in initially compact
material tends to be offset by the correspondingly emaller total mass between
the source and a given radius. Hence, the pressure is comparable. A similar
argument applies to variations in the zero-degree isotherm in that higher initial
densities arc (usually) associated with lower compressibilities; again greater
total mass is associated with less energy dissipation per unit mass. To these
effects must be added the other obvious normalizing effect, namely geometrical

divergence.
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Some of the results obtained from the use of the above models are sum-
marized in Figs. 6-10 to 6-13.

In view of the previous results, an extensive and detailed study of the pa-
rameters mentioned above was not pursued during the past year. Instead effort
was concentrated on an area that has so far received little attention and which
could cause peculiarities in experimentally observed pulse shapes and which
might significantly influence shock decay. This problem was suggested by the
experimental equation of state measurements and is the problem of the effects
of a phase transition on shock propagation. See also Sec. 5. Polymorphic
phase transitions are common for rocks and minerals because they are gener-
ally composed of open silicate structures that are unstable at high presures.
Moreover, some at least are known to be irreversible. The high pressure
polymorphs of quartz, coesite and stishovite have both been recovered in the
vicinity of underground nuclear explosions and near the Barringer meteor
crater.33 Where a phase change is irreversible, large energy dissipation occurs
that could cause appreciahle attenuation of the shock pulse. Perhaps more
importantly, phase changes can cause the shock to propagate as two distinct
fronts of different velocity. The peak pressure can thereby be considerably
delayed with respect to the first shock arrival, Failure to recognize the exist-
ence of such shock structure could cause erroneous interpretation of experi-
mental field observations, such as may be obtained with short duration peak
pressure gages, or simple time-of-arrival gages.

Initial attempts to include the phase transition in the flow calculations led
to difficulties in the form of instabilities. These instabilities are thought to
arise from discontinuities in slope of the P-V relation, although the precise
reasons for the trouble are not understood. Consequently, some effort was
devoted to generating functions that would smoothly represent both reversible
and irreversible phase changes. The results of flow calculations based on
these functions show qualitatively the kinds of pulse shapes that would be ex-
pected in the case of a material that undergoes a phase transformation. Even
with these smooth functions, however, oscillations in the flow parameters were
not entirely eliminated. For the most part, the phase change has been con-
sidered to be reversible. This case is of interest because the model implies
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that rarefactions in the flow should interact to form a rarefaction shock.35’ 16,37

Such a discontinuity is as difficult to treat with a finite difference method as the
more usual compression shock. Hence, for a reversible phase change, it is
necessary to use the artificial viscosity, Q, in the flow calculations for rare-
factions as well as for shocks,

One of the models -icribed below represents a reversible phase change
only. Another model w . devised which could be used to represent both irre-
versible and reversit' - phase changes. No provision was made for the phase
change of only a portion of the material. That is, the material must be shocked
to a critical volume before it is allowed to expand as irreversibly. This model
reproduces the 0°K isotherm of stishovite at high pressure. Hence, it is rea-
sonable to compare the results of the flow calculation using this model with
results reported previously for distended quartz and stishovite.

B. EQUATIONS OF STATE

As noted in the Introduction, several relations have been used for the equa-
tions of state in the computation experiments, In all cases, a form of the Mie-
Griineisen equation of state has been used. This equation relates pressure P,
volume V, and energy E for one state, say on an adiabat, to a state at the
same volume on the 0°K isotherm, so that

P-Pp = I'(E- Ek)/V (6-1)

where subscript k refers to the 0°K isotherm and I' is the Grilneigen ratio.
In the following, an equation of state consists of a definition of a 0°K isotherm,
which is specified by a relation between P, and V. For porous materials the
initial state is not a true thermodynamic state of the solid. For these cases,
therefore, Py is required to be zero for volumes greater than the initial
volume V o The value of V o for quartz and stishovite are their respective
crystal specific volumes, 0.37 and 0.23 cc/g. For dry playa (as reconsti-
tuted for the Hugoniot experiments the value of V _ is 0.513 ce/g.

117

|
|
|
|
|
|




Because of the phase change in quartz, theoretical isotherms were derived
for both quartz and the high pressure material, stishovite, see Fig. 6-1. The
phase change is represented by a transition curve connecting the quartz to the
stishovite curve at a pressure of about 0.2 Mbar. During the first year's
work, 1 a straight line was used for the transition curve. This, and perhaps
other causes, led to instabilities in the computed results. This trouble made it
desirable to use as simple a relation as possible for the isotherm so that the
cause of the instability could be investigated.

1. Single Function Representation of a Phase Change

The function

P, = 0.2 - 609.4(V - 0.27)° + 4114(V - 0.27)* (6-2)

— —

Mbhar

PRESSURE
-

0 010 020 030 040 0 %0 060 070 080 090 1.00
SPECIFIZ VOLUME cm3/zg GA 4475 43

FIG. 6-1 COLD ISOTHERM FOR QUARTZ AND STISHOVITE
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is used to relate the pressure, Pk , along the 0°K isotherm to the volume V.
Units of Pk are megabars and of volume are cc/g. The interesting feature of
this function is shown in Fig. 6-2. The function is flat for V = 0.27 cc/g,
where the pressure is 0.2 Mbar. The energy for the 0°K isotherm is obtained

by evaluating the expression
E, = - f P, dV . (6-3)

Sound speed is evaluated by use of the expression

_\/d_P . _
c = <dp>s (6-4)

The initial volume, V_, is 0.371 cc/g for this model. Because the same rela-
tion is used for compressions as for rarefactions, this model represents a

reversible phase change.

2. Multifunction Representation of the Phase Change

A better representation of the theoretical curves for quartz and stishovite
can be obtained if three functions are used. This also permits the flow calcu-
lations to proceed as if the phase change were either reversible or irreversible.
For the interval 0.376 < V < M where M = 0.25, the relation

P, = 0.2+ (V-0.25°[-977.1 + (V- M) [12397.0 - 43129.o(v-M)]] (6-5)

is used. Equation (6-5) represents the quartz curve fairly well up to about 0.06
Mbar, see Fig. 6-3. Above 0.06 Mbar, the effect of the phase change causes
Eq. (6-5) to give results above the quartz curve. At V = 0,25, the value of

Pk is 0.2 as desired.

For greater pressures the cold isotherm is given by

P = 0.2+ v -Mm?> [-3483.0 + (V- M) [-21681.0 - 168022.0(V-M)|I (6-6)
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This function joins the stishovite curve rather smoothly at V = 0,193, see

Fig. 6-3. Finally, for V < 0,193, the stishovite curve is represented by
Pk =7 [—8.913 + n|374. 23 + 1 [5058.0 + 63476 N Ii] (6-7)

where
= V -0,2304.

Equation (6-7) gives the same results for pressures up to 10 Mbar as does the

more complicated expression used previously for stishovite.

The energy for the cold isotherm is evaluated by the use of Eq. (6-3), using
the proper constants of integrations where functions are joined. I the phase
change is assumed to be reversible, the path ABCD in Fig. 6-4 is used for the
relief process as well as for the compression process. If the phase change is
considered to be irreversible, the compression path is still ABCD. For the
relief process, however, the path DCE must be followed, so that Ek =0 at
V = V2 . Hence part of the energy gained by the material in compression is
lost in the phase change.

It must be understood that the above scheme is not intended to describe the
behavior of any real material, The scheme is intended to be used in flow cal-
culations in order to see what effects a possible phase change has on the com-
puted results. This model makes no provision for a change in phase of a part
of the material. In order to expand as stishovite, the material must have been
compressed to a volume of 0,193 cc/g or less, for which the corresponding

pressure is 0,72 Mbar.

C. SPHERICAL PISTON

The code simulates a situation in which a disturbance in the playa is driven
by an event in a cavity 1 meter in radius., Thus the cavity has about the same
volume as the cavity for the Rainier event.38 The cavity is assumed to be filled
with an ideal gas whose density is 0.14 g/cc and whose energy is 73.5 megabars
cc/g (or 73.5 x 1012
adiabatic exponent is assumed to be 5/3. The advantage of using this model is

ergs/g) so that the pressure is about 6.9 megabars. The
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FIG. 6-4 SCHEMATIC OF REVERSIBLE AND IRREVERSIBLE
PHASE CHANGE

that the maximum pressure induced in a medium surrounding the cavity depends
on the P,V, E relation of the media. In some of the earlier work, an arbitrary
relation was assumed between the pressure in the cavity and the time, so that
the same maximum pressure was induced in a "soft" material as in a ""hard"
material,

The assumption that the bomb fills the cavity uniformly with an ideal gas
which expands adiabatically precludes the formation and interaction of shock
waves in the cavity. In the calculations the cavity is not zoned, and no details
of the flow of the gas in the cavity are calculated.
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D. RESULTS OF CALCULATIONS

Results of flow calculations will be presented here for each of the equations
of states described in Section B, Results are presented graphically, largely by
showing the dependence of hoth the pressure and the particle velocity on distance
at fixed times for a particular equation of state. Time of arrival curves and
plots of peak pressure vs distance are also used to show some of the results of

the changes in the equations of state,

1. Results Using Single Function Representation of a Phase Change

Equation (6-2) is combined with the Mie-Griineisen equation of state, Eq.
(6-1), the value of T being 2/3. Calculations were performed for initial vol-
umes of 0. 371 cc/g and for 0.504 cc/g. For these calculations, the bomb energy
was reduced from 73.5 to 7.35 Mbar cc/g so that the maximum pressure in the
cavity is 0.7 Mbar.

Results obtained from the flow calculations for an initial volume of 0.371
cc/g on are presented in Figs. 6-5(a) and 6-5(b). Figure 6-5(a) shows the
pressure 28 a function of distance from the center of the cavity. The interesting
features of the pressure profiles are that the fronts of many of them are no
steeper than portions of the back sides of the waves. For these calculations,
the artificial viscosity term was employed in both compression and in rarefac-
tion waves. This is consistent with the original formulation of the artificial
viscosity method (except that a small linear term has been introduced).34

Further complications result when the material is distended, i.e., the
quartz is assumed to be filled with small holes. It is also assumed that when
the temperature is 0°K, the materia) crushes under little or no pressure.
Figures 6-6(a) and 6-6(b) represent the results of computations for which the
original volume is 0.50 cc/g or about 1,36 times the volume used in obtaining
the results discussed immediately above. The results are very different in that
the pressure drop in the initial rarefaction is very steep. When the time is
200 psec, the rarefaction has almost overtaken the shock front. When the time
is 250 usec, the entire wave has been drastically attenuated. Following this
initial attenuation, the wave is oscillatory back of the shock front. From the
calculations themselves, there is no way of determining if the oscillatory
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FIG. 6-5(a) PRESSURE vs. DISTANCE FROM CENTER OF CAVITY

Single function phase change, V;, = 0.37 cc/g; AR = 5 cm, Q operated in compress
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behavior is due to wave interaction, or if it results from deficiencies in the
method of obtaining the solution, The undershoot on the early profiles (T =
100, 150 and 200 usec) is likewise not understood.

The results presented in Figs, 6-6(a) and 6-6(b) were obtained by using
Q in the conventional manner, i.e., in the "cut-off" form so that Q is non-
zero only in compression, If Q is used as originally proposed by von Neumann
and Richtmyer34 the results shown in Figs, 6-7(a) and 6-7(b) are obtained. For
these results, there are no oscillations following the initial large rarefaction.
Neither are there undershoots of pressure or of particle velocity immediately
following this rarefaction. The profiles are still oscillatory, however, after
the pressure has been attenuated below 100 kbar. Hence the significance of
these oscillations is still undetermined.

The use of a linear artificial viscosity should have a significant damping

efiect on oscillations. The term

Q = -0.5(ud+1) - u(@)

was used alone, and only in compression in obtaining the results shown in Figs.
6-8(2) and 6-8(B). These results have all the peculiarities first noted in Figs.
6-6(a) and 6-6(b). That is, the solution undershoots following the first large
rarefaction and then oscillates. Also, after attenuation to below 100 kbar the
profiles are oscillatory.

From the three sets of results as shown in Figs. 6-5(a) through 6-8(b), it
appears that interactions between the form of the equation of state and the nymer-
ical computation scheme may be causing serious convergence problems. The
oscillation and undershooting mentioned above are also observed when the bomb
energy is increased to 73.5 Mbar cc/g. Thus these features of the calculated
results are not dependent on the pressure in the cavity. I any judgment is to be
made, the results shown in Fig. 6-7 are preferable. That is, permitting the
artificial viscosity to operate throughout compressions and rarefactions give

the preferred results.
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2. Multifunction Representation of a Phase Change

As described in Section B, this representation of the Pk » V relation rep-
resents quartz at low pressure and stishovite at high pressure. In this formu-
lation the phase change can be treated as if it were completely reversible, or
stishovite may be allowed to expand entirely as stishovite, but no mixed phases
are possible in expansion. The critical compression for which alternate relief
paths may be chosen corresponds to V = 0,193 cc/g.

These equations of state relations have been used in calculations for which
the original volume is 0. 51 cc/g (that is, the material is distended from the
solid specific volume of 0.371 cc/g), and for which the cell size is 5 cm. The
energy in the cavity is 73.5 Mbar cc/g, giving a maximum pressure of about 7
Mbar in the material near the cavity. The artificial viscosity term is used in
both compression and in rarefaction. Results are shown in Figs. 6-9(a) and
6-9(b) for which all elements of the compressed .aaterial expand reversibly
with respect to the cold isotherm. This model also shows the steep rarefaction
(see profiles for 200 and 300 usec) discussed above. The particle velocity pro-
files are perhaps more interesting for this case than are the pressure profiles.
As stated above, there is no intent to imply that playa (or any other material) is
described by the models discussed here. However, the response of some rea
material may have features in common with a model such as the one used here.

The results obtained when stishovite is require.: to expand entirely as
stishovite differ very little from the results shown in Fig. 6-9. For this
reason, the profiles are not given. The explanation of this small difference is
that very little of the material is ever compressed to a volume of 0.193 cc/g
or less. Out to about 150 cm from the center of the cavity, some of the mate-
rial is compressed so that the volume is less than 0.193 cc/g. Slightly further
out the wave has attenuated to such an extent that the volume is never reduced
to the critical volume. Thus a spherical shell 50 cm thick surrounding the 100-
cm radius cavity contai.s stishovite. Forcing this small amount of material to
expand as stishovite, changes the propagation of the wave very little. Using a
greater pressure in the cavity would undoubtedly make the results obtained

from the use of the two mode!s differ more dramatically in range of distances

examined.
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FIG. 6—9(a) PRESSURE vs. DISTANCE FROM CENTER OF CAVITY
Multifunction phase change (reversible) V, = 0.51 cc/g, AR = Scm,
Q in compression and rarefaction.

E. CONCLUSIONS

In this phase of the program, including the previous years effort, some
effects due to variations in equation of state on spherical shock propagation have
been examined. For this study a particular energy source was chosen to give a
rough approximation to a representative nuclear explosion. Pressure and par-
ticle velocity pulse shapes and the rates of decay of their peak amplitudes with
distance are shown for different models of the ejuation of state based on differ-
ent assumptions for the zero-degree isotherm, Griineisen's ratio, the degree of
porosity, and including a reversible phase change. These variations represent
reasonable bounds to the uncertainties in knowledge of the equation of state of
playa. Because of the particular source function chosen, no claim of generality
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FIG. 6-9(b) PARTICLE VELOCITY vs. DISTANCE FROM CENTER OF CAVITY
Multifunction phase change (reversible) Vo - 0.51 ce/g, AR = 5 cm,
Q in compression and rarefaction.

of the results can be made. Nevertheless, the results should be useful in indi-
cating the sensitivity of shock propagation to uncertainties in the equation of
state.

The effects of changes in chemical composition within the limits of observed
variations in the playa were not studied explicitly by shock calculations. Exam-
ination of the effects on the equation of state showed that the variation (theoreti-
cally) is small and lies within the range of variation already examined by means
of other parameters, such as Griineisen's ratio. It is concluded, therefore,
that variations in chemical composition are of lesser importance than the uncer-
tainties to be expected in other parameters.
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Unfortunately, experimental data on the effects of moisture on the equation
of state (particularly release adiabats) did not become available in time to in-
clude such casces in the shock calculations. Moreover, a strictly theoretical ap-
proach did not appear likely to be very meaningful. Consequently, the effects of
moisture on shock propagation remains an unstudied problem.

The observed differences in the arrival time of the peak pressure are shown
in Tigs. 6-10 and 6-11. The differences in peak pressure as function of the
radial distance amount to a factor of three or iess, and are shown in Figs. 6-12
and 5-13. In general the peak pressures .ssuming a cold isotherm correspond-
ing to stishovite lie below those assuming a quartz isotherm., The direction of
this result is clearly proper since there is greater energy dissipation (waste
heat) where the release adiabats (and cold isotherm) are steeper.

The effects of varying Grineisen's ratio are alsc In the expected direction.
Higher values of Griineisen's ratio correspond to shallower adiabats and, hence,

less energy dissipation.

The effects of varying porosity are surprisirgly small because porosity
drastically cffects energy dissipation, The only plausible explanation is that
there are two effects that tend to be self-compensating. Higher porosity, and
higher dissipation are associated with less mass between the source and a given
radius. These two effects cancel to such a degree that the peak pressure at a
given radius is not seriously affected. This result is perhaps the most vignifi-
cant one of this phase of the program.,

The effect of a phase change is mostly to alter the pulse shape and to cause
abrupt changes in the rate of decay of peak pressure. Recognition of such pos-
sibilities may be important in understanding field results obtained by short

duration pressure gages, or simple time-of-arrival gages.

It was also found that where reversible phase changes occur, the artificial
viscosity term in the numerical differencing scheme should be allowed to oper-
ate in rarefaction as well as compression in order to accommodate rarefaction

shocks.
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APPENDIX

HIGH DENSITY MODELS FOR
SEMIEMPIRICAL COLD EQUATIONS OF STATE FOR SOLIDS

Christian Peltzer

I INTRODUCTION

Various high density models for solids have been introduced to
calculate equations of state of materials valid in the pressure range
attainable through explosions, high velocity impacts, etc. It is impor-
tant to realize that the resulting equations of state are ''asymptotic

model equations of state, "

not proper mathematical asymptotic forms
(in the limit of very high densities) of the exact equation of state of the
system. Because of their ad hoc nature it is difficult, if at all possible,
to establish their range of validity and to give estimates of the error
involved in their use in various density ranges. An answer to such
questions can only be obtained within a more general framework that

would allow a precise mathematical formulation of the physical

assumptions made and a bona fide estimate of the resulting error.

The basic physical assumptions underlying all high density models
are that, in the limit of very high densities, all shell structure of in-
dividual atoms disappears and that the energy of the electron system

tends towards that of a uniform density system.

Here we discuss briefly various high density models* and the

corresponding cold equation of state.

Only nonrelativistic models will be considered.
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A general and powerful method for handling the basic, many-body
problem of solid state physics has been developed by several authors.
An outline of this method, the generalized density operator theory, will
be given elsewhere;® there, we will try to show how it allows a unification
of various cohesive energy theories and a better understanding of the
approximations involved, and why it could lead to new and better compu-
tational techniques for obtaining equations of state. Any serious discussion
of the validity of the various models used below is best deferred until this

formalism has been introduced.

II. SIMPLEST HIGH DENSITY MODELS

A. Perfect Free-Electron Gas

The simplest high density model (Model I) is that of a
perfect, free (i.e., noninteracting), electron gas of uniform density in
a uniform positive background (necessary for charge neutrality). Such
a system possesses only kinetic energy, the constant potential being
taken as zero; this energy is a function of the electron density and so,
for a fixed number of electrons, of the volume. (The electrons being
fermions cannot all lie in the same lowest one-electron energy level

even at T =0.)

* Forthcoming ISR report (184531-110).
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Let V be the specific volume of the system, Mm the molecular
weight, Z = ZliniZ.1 the total number of electrons per molecule, pe the

electron density. Then

N 2 N Z
-1 g -1
pl = a - € == _V_Z.__. £ = const (l)
m m 00 a
where Na is Avogadro's number, § = VY~ the relative specific volume
00

(V = voo at the reference state P =0, T =0), and Va the effective

atomic volume at the reference state.

The electron kinetic energy density €, of a perfect free electron

k
gas is well known and is
5/3
€, = p (2)
k k
with 2/ 2
3 21¢/3 4 2 -27 2
=] — —_—_ = . 1 = . 1
Otk 10 3n — 2.871e a_ 3.505x 10 ergcm  (3)
5’ -8
where ao = 5 = Bohr radius = 0.5292 x 10 cm.
me
The internal energy per gram E£=V€k is given by
1 -2/3 -2/3
= = 4
E_ = AV B, & (4)
with
Nz |33 zv_ \5/3
L a = 00
k k|l M k v
m a
(5)
B, =V 23, L gy —2—5/3
k oo k k'oo| v

The corresponding cold pressure and bulk modulus are obtained from

the thermodynamic relations:

145



and so

(7)

is obtained.

The following relations should be noted

2
PIV = — EI (Virial theorem)
c 3 c

B, = TR
This mcdel obviously does not exhibit any binding as Ei is a monotonic
increasing function of p = 1/V in the whole domain (0,%). The energy
zero chosen here corresponds to an infinitely dilute system, i.e., to

the limit p —# 0 or V —p®,

B. Uniform Electron Gas with Exchange

Apparently, a better model could be that of a uniform
density, imperfect, free electron gas in a uniform positive background.

By imperfect we mean that the electrons are allowed to interact among

themselves; the system will then have, besides its kinetic energy, a

volume dependent potential energy.
The total energy density can be written as a sum of three terms

€ = €, + € + 8
k ex ‘corr (8)

where the first term is the kinetic energy of the corresponding free

electron gas (also often written E—F and called the mean Fermi
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energy*), the second term is the exchange energy,and the third one the

correlation energy.

The exchange e¢ffect is of a repulsive nature; its origin lies in the
Pauli exclusion principle that prevents two electrons with parallel

spins from occupying the same cell in phase space. (The Fermi statis-

tics only limit the number of electrons per cell to two regardless of
their spins.) It follows that an electron effectively will strongly repel
all other electrons having parallel spins and one says that each electron

is accompanied by a "Fermi hole."

The exchange energy of a free electron gas has often been calcu-

lated and is given by:

e4/3
€ = -ap (9)
ex x
with
1/3 -1
a = 3 2 e2 = 0.7386 e2 = 1.704 x 10 9ergcm .
x 4 |7

Neglecting the Coulomb correlation effects, the equation of state of

Model II is given by

II -2/3 } -1/3 -2/3 ) -1/3

= = 10
EC AkV AxV BkE Bx£ (10)
with
N Z 4/3 ZV 4/3
R a - 0o
x x\ M x v
m a
(11)
4/3
-1
B =V /3A = aV =
X oo X x o0 |v
a
* One must not confuse the energy at the Fermi level GF and the
- 3
mean Fermi energy GF, here equal to 5 (F . The same remark

holds for the correlation energies.
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From Eqs. (10) and (6) we obtain
B B

I _ 2 -5/3 1 -4/3 2 "k ,-5/3 1 °“x ,-4/3
Pe T3 AV AV Tty 8 ¢
00 00
and (12)
BH = .l_O.A V-5/3 iA V-4/3 = 10 Bk 6-5/3 4 Bx €-4/3
C 9 k 9 x 9 V - 9 Vv .
00 00

It is easily verified that the Virial theorem also holds for this model.

11 2 1
= 4+ —
PCV 3 Ekin 3 Epot
where E = EI and E = -E = exchange energy
kin c pot x ° g Y-

Model Il corresponds to the Hartree-Fock approximation for 2
uniform density elactron gas; the kinetic energy of the system is the
same as that of a perfect electron gas, but this model exhibits some

binding because of the repulsive nature of the exchange interaction

which is included now. [Its equilibrium volume VII , i.e., the volume
1 equ
minimizing Ec , 1s obtainea as the solution of
pII =0,
C
and one has 5
2A YA
vl - k\ = 41.95 -2 = 69, 622 s
equ A M 24
x | m v, X 10
or (13)
I Z Z
§ = 41,95 — = = 69 622
2
equ vooMm va x 10 4

One sees that EHu is, in general, much larger than 1; the binding is
e
too weak. At the reference state, Model I] gives a pressure of the

order of the megabar instead of zero.
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Using Eqs (10) and (12) as semiempirical equations of state,
treating Ax as an adjustable parameter to be determined from the

nm 1 [ “Pk

€ = |
equ Voo \ Ax

relation ( 2A 2
= 1,

is essentially McMillan's empirical procedure applied to the uniform

electron gas model instead of the T-F model.

C. Uniform Electron Gas with Exchange and Correlation

The origin of the correlation energy lies in the Coulomb
interaction of the electrons; this is a classical two-body interaction
2 . .
given by terms of the form e /rij where rij is the distance between

th th
the i and j electrons. It depends on the simultaneous positions of

the two electrons, hence the name ''correlation effects.' The Coulomb
interaction between like sign charges being of a repulsive nature and
this repulsive energy becoming infinite for r = 0, one can say that

each electron is surrounded by a ''Coulomb hole' with respect to ail

other electrons. As the exchange effect gives rise to a similar effect
for each electron with respect to all other electrons with parallel spins,
the main part of the Coulomb correlation energy of an electron gas will
arise from the interaction between electrons with opposite spins if the
exchange effect has already been taken into account. The Coulomb
correlations give rise to a change in both the kinetic energy of the
electrons (with respect to that of a perfect free electron gas) and their
potential energy, the net effect being a lowering of the total energy of

the system, i.e., an increase in the binding.

A clear distinction must be kept between a uniform density elec-
tron gas and a uniform continuous charge distribution. If we replace
the electron gas by such an equivalent (charge wise) continuous distri-
bution, the electrostatic potential energy of the total system (electron

and nuclei)would be zero here. each volume element being neutral.
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The electrostatic potential energy of the continuous charge distribution
equivalent to the electrons can be called the ''classical elecirostatic
potential energy'' of the electrons. But in such a replacement the
localized nature of the electrons is neglected, and the direct electron-
electron interaction is only partly taken into account, appearing as a
classical screening effect. The (Coulomb) correlation energy will be
defined here* as the difference between the energy calculated on the
basis of the Hartree-Fock approximation and the exact one for a given

Hamiltonian.

The evaluation of the average Coulomb correlation energy density
Ecorr is a considerably more difficult problem than that of the exchange
energy, and explicit expressions valid for all densities have not yet
been obtained. Wigner derived expressions for Fcorr in the low den-
sity limit, and more recently Macke, Bohm and Pines, and others
have given high density limit expressions. Various interpolation for-
mulas have also been used by several authors. Here we shall only

consider the high density limit expression in view of the asymptotic

nature of the model and its general shortcomings.

One has for ?c 0

- e e l/3 e
=2 4 = 1
€. @ p ina(p ) o,Pp (14)
with
1 : s 12
o = (1- n2)E—~ = 0.0311 52— = 1.356x 10° “erg
C 2 a a
m o o
1/3
‘4—" a = 0.853 x 10 Scm
3 o)
2
212
a, = 0.048: = 2.092 x 107 “erg

% Several other definitions of the correlation energy are used in the
literature.
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Model III is that of « uniform density, imperfect electron gas in
a uniform positive background, exchange and correlation effects being
taken into account in an approximate way (essentially through a high

density perturbation expansion).

One obtains for the cold internal energy per gram Ein:
-2/3 -1/3
EHI=AV /-AV /+A InVv - A
C k x € d
or (15)
I1I -2/3 1/3
= - ) -
E_ Bk£ BxE +B_ ng B,
with
N Z
S SO B = A
Ac 3 ¢\ M c c
. (16)
N_2 Nz |1/3 N_Z
= +
Ad EEC Vi Ina i ozd M
m m m
= - A ]
Bd Ad AC nVOo
The cold pressure and cold bulk modulus are given here by
mo_ 2 5/3 1 -4/3 “c -1
Po T34 -3AY 0 o3
(17)
B
2 Py KL By 431 e
T3 vV IR 3V
oo 0o 00
and
S 10 o5/3 4 43 @ !
c 9 Tk "9 Tx 3
(18)
10 Be s34 By a3 1 B 5!
"9 "9 "3V
? Voo g Voo 00
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The inclusion of the correlation increases the binding, but one can
verify that the pressure at the reference state is still of the order of the

megabar in general. The equilibrium volume Vinu 1s given by the

positive root of the equation Piﬂ = 0, i.e.,
4A 3
111 k
VvV = ’ (19)
equ >
A+ \/A + 8A A
x x ki'c

I

and, in general, the corresponding 521 is >> 1,

Because of the (4n V)-term, Eq (17) cannot be used over the whole
range (0,%) of V. To obtain an expression valid in this whole range one
could simply replace the E—corr of Eq (14) by an interpolation formula
having (14) as high density asymptotic limit and going over into Wigner's
expression, e.g., in the limit of low densities. The validity of such an
interpolation formula is, of course, always open to question at inter-

mediate densities. (See II).

13,14
D. Uniform Electron Gas with a Positive Lattice Background = '

In the previous models, charge neutrality of the system was
obtained by assuming the existence of a uniform, continuous, positive
charge distribution; such a background differs markedly from that of
real matter, and it seems more natural to represent the nuclei system

by a positive point charge distribution. The model to be considered now

is that of a uniform electron gas with such a positive lattice background.

The essentiial assumptions made are that the kinetic energy of the
nuclei is negligible, that the static approximation is valid (allowing the
separation of the electrons and nuclei motions), and that the nuclei
form a regular lattice. For simplicity we will consider here only one

kind of nuclei and a simple lattice (no basis).

152



AB s e g

The assumption of a regular lattice is made plausible (for all
elements except He and possibly Li) by the fact that the energy associated
with the formation of the lattice is negative and by Abrikosov'sl4estimate
of the zero point nuclear vibration amplitudes for this model. As Z,
the atomic number, factors out in the expression for the lattice binding
energy, the geometry of the energetically most favorable lattice is in-
dependent of Z (universal for all elements). In principle it should be
obtained by strict maximization of this lattice energy, but the energy
differences for different lattices are small and within the limits of
accuracy of the model one can limit oneself to a cubic one. On the
other hand, for polyatomic materials energy differences between vari-
ous nuclei geometries could be greater, and further study of this point

seems worthwhile.

The total energy of the system can be written as a sum of three
terms, and in the high density limit the leading one is the kinetic energy

of the corresponding perfect free electron gas € In the approximation

K
considered the exchange and correlation energies will be the same as
before, up to an additional electron-nuclei correlation energy. But the
'"classical'' electrostatic energy of the electrons, ‘cl , will no longer
be zero (as with a uniforrmn positive background). There are three con-
tributions to ECI: the nuclei-nuclei, the electron-nuclei, and the
electron-electron Coulomb interaction energies; but the three must be
handled together as each separately would diverge for an infinite solid.

We emphasize again that in calculating €. the electrons are replaced

)\
. . e

by continuous charge distribution of density (~ep ) and that the electron-

electron interaction taken into account is only the classical screening

effect of such a charge distribution, i.e., only a partial, average,

electron-electron Coulomb interaction.

153



s T
!

i

e e Al—

One obtains* for Ecl:

i 2%/3.

€ =—och with a ., = 1.44e (20)

cl

This energy results from the formation of the lattice and is sometimes

called the 'lattice binding energy."

Neglecting correlation terms. we obtain the Model IV equation of

state
v -2/3 -1/3
= s +
EC AkV (Ax Acl)V ,
or (21)
IV -2/3 -1/3
= - +
I':c Bk£ (Bx Bcl)g

with A, Ax, B Bx given as before, and

k Kk’
N Z 14/3 , YAY 4/3
2
A = l.44e°2%/3(_2 = D ameczle o
cl M v
m a
and (22)
. \4/3
B = SR EE l.44e2V 22/3 Z
cl cl oo 00 va

Comparing (21) and (10) (uniform electron gas with exchange in uniform

positive background), one sees that:

1) The lattice binding energy Ecl 1s of the same order
in V as the exchange energy (inthe high density limit).
2) Ec ;s/3proportional to Z2 while Ex is proportional
to Z only; one has
EE" = aa" 273~ ?:Z: 27213~ 0 5142723
cl cl (23)

Abrikosox}‘lgives a . =1.3; we obtained 1.41 for a sc lattice and
€
1.44 for a fcc and a bcc.
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3) fhe binding is considerably greater in this model and

the equilibrium volume is now:

2 3
S U S T R 16.90 z
.+.
sau 1AM A [0.74 + 1.442273) 3 M
or (24)
v 41.73 Z
equ [ l+0.51422/3]3 VooMm
. v . : 111
One can verify that, in general, £ is less than 1 (while £ >> 1),
equ equ

At the reference state Model IV gives a negative pressure, i.e., a

tension state rather than a compression state of the order of the megabar.

We can also consider a Model V by introducing here the correlation
energy; these corrective terms are of the same form, in the high den-
sity limit, as in the case of the uniform background, and their effect

is similar (see II).

As we have seen, Models Il and IIl exhibit considerably too weak
a binding, while Model IV exhibits too strong a one at normal densities.
Although these two models could be used as bounds for the exact cold
isotherm EC, such a property has in no way been proved here. The
rigorous derivation of sharp enough upper and lower bounds for Ec’ PC,
BC over an extended range of densities appears to be an almost impos-
sible problem in the frame of the standard approaches to the study of
the ground state of most quantum mechanical systems; but we believe
that significant progress in obtaining such results can reasonably be
expected by rephrasing the problem in the generalized density operator
fsrmalism and making better use of the available tools of modern

functional analysis. Preliminary studies along this line are presently

being conducted here at Stanford Research Institute (ISR-184531-110). L
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II1. THE T-F AND THE a.'-F-D STATISTICAL MODELS FOR MONO-
ATOMIC CRYSTALS

A, Introduction

The semiclassical statistical approach, introduced by
Thomas and Fermi in 1927 and developed since by many others, is
very simple conceptually but its range of validity and proper estimates
of the errors involved (as compared to the Hartree, Hartree-Fock,
and/or the exact solution for a given Hamiltonian) have not yet been
established, although significant progresses have recently been made
in answering such questions, in particular by March, Kirzhnits and
others. A discussion of the foundations of the statistical method is best
conducted within the frame of the generalized density operator theory
and will be given elsewhere. Here we shall give only an heuristic and
a variational derivation of the basic equation of the T-F and T-F-D
models and shall compare the resulting equations of state for solids

with those already obtained.

B. Description of the Models and Heuristic Derivation of the
Basic Relation

In the simplest statistical models a solid, represented by
a system of electrons in a positive lattice background, is treated in the
following manner. The kinetic energy of the nuclei is neglected, and
the validity of the static approximation is assumed; furthermore, one

argues heuristically that:

1) The electron system can be treated locally as a free
electron gas--with exchange in the T-F-D model--
raised at some position dependent electrostatic
potential V(?).
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2) The electron system is in a bound state and in statis-

tical equilibrium, i.e., no energy can be gained by

transferring an electron from one point to another in
the solid.

3) The electrostatic potential of the electrons can be
taken as that of an equivalent (charge wise) continuous
charge distribution -ep(?) satisfying the classical

Poisson equation with the usual continuity conditions

> . dv -
for V(r) and €n T across any boundary
surface.
AVED) = amep(D)
(1)
t+ b.c.
4) The total energy of the electron-nuclei system can

be obtained, in the T-F model, as the sum of the free
electron kinetic energy Ek and the ''classical' elec-
trostatic potential energy of the system E_;. In the
T-F-D model the Pauli correlation effects are

approximately taken into account by adding the free

electron gas exchange energy Ex

From these assumptions, one derives the basic relation of the
. e, ,
model, namely, the relation between p (r) and the total electrostatic

-
potential V(r)

v > > + v '-D Y (-b)
(r) = Vn(r) e\r) e

where V is the potential due to the nuclei, Ve that due to the elec-
n

%

trons and V any external one.
ext

Y ‘ is assumed null in the sequel. .
ex
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From 1) and 2) it follows that the energy of an electron at a poin: ?

1s given by
2 5 2

> >
B evir) - 2= p(r)

Since one is considering bound states, one must also have the relation

2 2

P ev@) - S plr) 5 -ev 2)
2m -"hpr eo

. > .
where -eVo, the maximum potential energy of an electron at r, 1is

position independent (from condition c) ).

<>
The maximum momentum p a (r) of a free electron gas is re-
max

lated to the electron density by

1/3
i 2.1/3 e
Poa,lr) = 37 ) hop :

Combining these two relations, one obtains the basic relation of the

T-F and T-F-D models:

2
1 2 2> e >
2m pmax(r) ) TH pmax(r) B e(V-VO)
or
vovy - et ne Q213 (313 4 113
e(V- c)) > ) ST o e
(3)
_ 5 - ez/3 -4—Ol el/3
T eyl
or
> 2 i3
p°(r) = Afat+[a”+(V-V )] (4)
with
. 2 20
(?.em)3/2 | 3e 3 ~ %e _ x \
A= /53 " |3a 3 (Zem)mm = = )
3nn k (15ea )*

(For the T-F model, one sets a = 0.)
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T'his relation, of course, holds only in regions where
2
a + (V-Vo) 20

and in regions of zero clectron density, the Poisson equation is replaced
i i e - >
by Laplace's equation. Knowing p (r) and V(r), the total energy of

the system 1s obtained from:

E = J’,pc(:)ek(:)d'r’ + j pe(?)cx(}’)d‘r’

/

G Variational Derivation of the Basic Relation

(5)

\ e, >

¥ +
Vn Ve p (r)dr En

-n

It is of interest to note that the basic relations (3) or (4) can
also be obtained from a variational principle, namely by minimizing the
total energy E--as given by (5)--under variation of the electron density
pe(;)) for fixed boundaries (and so fixed nuclei) and subject to the sub-

sidiary condition
>
]pe(r)dr = N = const (6)
(]\( = fixed total number of electrons.)

Introducing a Lagrange multiplier Vo. the extremum condition 1s

1S
6[E+ej\[\/o]-: 0. (7)
Using the expressions given previously for (k and Gx and the relation
> P
> F(F)dr
V (r) = /._9_(_)_5_ (8)
= 2.2

(i.e., Poisson's equation) one can write the energy in the form:

5/3 » e >4/3. » e?_ +> 'Pe(?)pe(:')
. =fl°‘kpe (r) - oo {r) “”z‘”‘“d;{ X

(9)
. e jv (MpS(NdT+ E
n n
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and Eq (7) gives

or

In view of the bound state condition (2), it follows that the lagrange

multiplier, VO, 1s the maximum electron potential and that

_ 2 ez/3 4 el/3
e(V-Vo) T3 olkp --3—Otxp

D. Some General Remarks on the T-F and T-F-D Models

The basic quantitites in the statistical models are the elec-
: e » : : o= > >
tron density p (r) and the electrostatic potential V(r) = Vn(r) + V (r)
e
+ eventually an external potential. An heuristic argument or an equiva-
lent variational procedure leads to the basic nonlinear relations Eqs (3)

or (4) of the T-F and T-F-D theories; the assumptica of the validity

of Poisson's equation and the usual electrostatic boundary conditions

complete the description of the models.

In discussing this approach, one can distinguish two groups of
specific assumptions, besides those leading to the corresponding

Hamiltonian of the proper quantum mechanical approach:

1) The exact energy expression for the given Hamiltonian
is replaced by a simpler one where not only the cor-
relation terms are omitted, but also the kinetic energy

is simplified by neglecting the effect of density gradi-

ents (off diagonal part of l"(x'l,xl), the lst order

generalized density matrix).
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2) The description of the system in terms of the wave
function <I>(x1, ...)or the reduced density matrices

-, ! g
-(x1 , xl), r(xlxz) is replaced by a description in
terms of p(?’) alone, i.e., essentially in terms of the

diagonal part only of the first order density matrix,

r(x'l, xl).

*
3) The electron density pe(r) is calculated on the basis
of heuristically derived, e¢ssentially classical equations,

rather than by solving the proper Schrodinger equation.

The difficulties in assessing the exact significance of this approach
lie essentially in the last two assumptions. A procper foundation of the
statistical method would require not only an estimate of the neglected
tcrins in the energy expression, but also a derivation of Eqs (1), (3), or
(4) as a meaningful approximation to the quantum mechanical ones.
Although several authors have recently made significant progress in
this direction, no complete solution of the problem is yet available. It
should also be noted that the statistical approach (T-F, T-F-D suitably
modified) is not necessarily limited to the accuracy of the Hartree-Fock
approximation but could very well offer in specific problems, a better
approximation to the exact solution, especially in view of the difficulties
in obtaining any degree of self-consistency in H-F calculations for
solids.

E. The T-F and T-F-D Models for Simple Monoatomic
Crystals

1. General Equations

For a crystal of lattice given by

<

> .
R = Zn.a, r. = %,0 integers
i i

1

(n)
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and such that all lattice sites are occupied by identical atoms of atomic
number Z, the energy per atom in the T-F-D method can be written
as:
1 > > > > > >
E~r = Ilm — pe(r)f (r)dr + f pe(r)E (r)dr
9 N—3 © N k X
NQ NQ

e ™ 202
> [ ZicRa{0) IR o 2l
calfm T (m)(n) 1R -K !

(n)
\
U & )p T 2

where £} is the primitive cell of volume = (21,;2

,5’3). (For the T-F

expression one should take Ex £ 0.)
Using the translational invariance of the crystal
e > > e > > > ->
r+ R = r Vir+ R = V(r

to simplify this energy expression one obtains:

Eq = [ akpe (r) - ozxpe (r)|dr - erT (r) 4 _U ‘I)f)ﬁ’(r ) agras
) )
(o] 0
(10)
2,2 .
+ % z ~——-—i - 2eZ j p (r) dr + e /j P (r)p (r ) drdr'
(=) | VRl a |R(m) Q Rim) * - )|

and the boundary value problem giving the electron density reduces to a
boundary value problem in a single cell Qo

>
. . . d € .
For the simple monoatomic solid considered here p (r) is to be

obtained as a solution of the system of equations:
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{

2/3
o _ 5 e > 4 e~»1/3
el V(r) - VO] = —:;—Otkp (r) - T Otxp (r)
(11)
- >
A[V(r) -V ] = 4mep (r) ,
with the boundary conditions
. -
lim rV(r) = lim r[V-V ] = eZ
r —s0 r —»0 o
(12)
€ = - °y =0 SA = surface of the cell
n dn Q
°Q

The first boundary condition states that the total potential converges to
that of the nuclei + Ze as r-0; the second follows from the lattice
translational invariance, the continuity requirement cn ‘n and the
inversion symmetry of £ and V. One should note that the translational

-
invariance automatically insures the continuity of V(r) across S.(if V

is bounded on 8§).

2. The Sphere Approximation

The ''sphere approximation'' consists:

a) in replacing the W-S polyhedron cell §} by a sphere

of equal volume, the so-called Wigner-Seitz sphere of radius r_ given
by

1
_[.3 13 _ [ 3vall/? (13)
Ts 4n o 4
where Va = atomic volume ;
b) in assuming that the electron density and elec-
trostatic potential are spherically syminetric 'R
pe = pe(r) and V = V(r) r = |2]; and
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c) in neglecting the overlap of the ''equivalent

spheres' in calculating the energy of the system.

With these supplementary assumptions the equations for pe take

the form
5 2/3 4 1/3
e[Vir) -V ] =~ o o)’ - o o)

(14)
2

1
— —5 (rV(r)) = 4mp°(r)

drz

with the boundary conditions

I;
r 0 r[ V(r) -Vo] = eZ

(15)
dv
dr

=0 (and V(rs) =0)

r=r
S

and the energy expression reduces to

r
e e
= o -
I:'J‘.2 417] kp (r) Otxp r dr
° (16)
: rs e 2
8 1yp! 2
; 4Tfeej Z o j P {r])r_Cr | p°(r)r ar,
r [r" - r|
o o
i.e., to that of an "equivalent spherical atom.'" The only difference be-

tween a free atom problem and that of a solid in the sphere approximation
. . e . :

is that in the later case p (rs) is not equal to zero in general, so the
pressure at the atom boundary due to the electrons is also different

from zero (compressed atoms).

Note that the overlap correction terms neglected are of the form

r

1 etz 5 p8(r)rdr
lim_ — { v —%2 . 417er s
Ne3® N (m) 2 lﬁ(m)' g lﬁ(m) - ?I
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B e e o -l o - - e e ERN e -
N, L o
- -" d -

+(4m) -——[[ L ‘° (rff (:) dr'dr (16)
-r+ R
(m)

and were included in the calculation of the energy of the uniform elec-

tron gas in a positive lattice background.

K. Some Remarks on the Sphere Approximation and on the
Inclusion of Correlation Effects in the T-F-D Model

Clearly the sphere approximation is in no way justified for
solids and is made solely for convenience to reduce the 3-dimensional
boundary value problem giving pe to a l1-dimensional one. Some of

the physical consequences of this approximation are that:

1) The crystallographic structure of the solid is almost com-
pletely washed away, the volume of the cell being the only remaining
geometrical parameter.

2) Since the solid is replaced by a collection of neutral spheres
with spherical symmetric charge distributions, no energy is involved
in forming the solid--only in compressing the individual atoms, and
this model cannot offer any resistance to shear stresses.

3) The extension of such a model to nonsimple crystals, in
particular to polyatomic ones, can be done only in a very artificial way
(such as the smoothing technique) or by introducing 'effective mono-
atomic models, " i.e., through largely artificial and arbitrary averag-
ing procedures.

4) Calculation of the electronic structure of the solid in this

approximation is almost meaningless.

1f, at the time of the development of the T-F, T-F-D models,
the available mathematical tools seemed to leave little hope of dealing

successfully with the 3-dimensional problem, the recent developments
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in mathematical techniques for handling such nonlinear problems--in
particular variational ones--have completely altered the picture, and
it appears that approximate solutions and proper error estimates could

be obtained for the actual problem.

This is one direction along which further research at this time
is possible. Within the limits of the statistical approach it would allow
one to obtain a more complete and realistic model for monoatomic and
polyatomic solids at high pressures including the pressure dependence
of the elastic coefficients, dielectric tensor and degree of anisotropy;
possible high pressure phase transformations could be better handled
and eventually the electronic structure of different types of materials
could also be studied over an extended density range by solving the

Bloch problem with the 3-dimensional statistical crystal potential.

Correlation effects can be introduced in the T-F-D model in the
same approximate way as the exchange effect in the T-F model, namely,
by adding to tke energy expression a term arising from the correlation
energy of the locally free electron gas:

e > - e, >
fp (rye_ _[p7]dr .

corr

This has been done by Gombas, Lewis, and Erma. The resulting basic
relation between pe and V(r) becomes quite involved, and a straight-
forward numerical treatment in the line of those applied to the T-F-D
model is almost prohibitive. Also the value of this extension of the

statistical method is very doubtful for it still leaves out completely

the inhomogeneity corrections* which can be at least of the same

order as the Coulomb correlation one.

A second direction along which profitable work on the statistical

approach could be done presently is in obtaining meaningful extensions

* These are essentially kinetic energy correction terms that take
partly into account the effect of potential (or electron density) gradients.
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of the T-F-D models; these should incorporate both inhomogeneity
corrections and correlation effects in a consistent fashion--at least to i
the same order in a perturbation expansion--and should include a

practical computational scheme. Various formal extensionslohave been

proposed in the last few years by several authors, but little numerical

work is available outside free atom calculations.

These different schemes are being presently evaluated, partly
in conjunction with basic work on the statistical and generalized density
operator theory, and we shall eventually report later on their possible

use in deriving improved equations of state for solids.
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